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Chapter 1

Introduction

1.1 Overview

This dissertation is the sum of 4 papers representing work carried out at Los Alamos
National Laboratory over the last 3 years. In this introduction, I will give a very
brief and high level view of the results in those papers as well as the publication
status of the same papers.

Science typically concerns itself with drawing conclusions based on measure-
ments. These measurements very rarely capture the state being measured. This
leads us to various inverse problems. Some problems, such as x-ray tomography or
seismic exploration, are the typical examples, but in actuality, many other scientific
questions find answers through the solution of some inverse problem. Let us for-
malize the situation which covers the type of problems studied in this dissertation.
One begins with a space of states X and an operator or mapping, F' : X — X,
by which we get an evolution of states £ € X in time. For simplicity and without
much loss of generality, we discretize time and let our time coordinate 7 take on
integral values: 7 € Z, where Z is the set of integers. We will denote the state at
time 7 = 4 as ;. Our time evolution is then given by z;.; = F(z;). To be more
general one would permit the operator F' to depend on time. For the purposes
of this introduction, we assume that F' does not depend on time. As the states
evolve in time, we perform measurements via another operator P : X — Y, where
Y is our measurement space. The sequence of measurements, observations or data
{--yY-2,Y-1,Y0, Y1, Y2, ...} is obtained by the operation of P on the sequence of
states {...,z_o, T 1,Zo, X1, Ta,...}.
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In addition to loss of information in the measurement process due to the fact
that the level sets of P are entire hyper-surfaces in X, we typically have “noise” to
deal with which means that for a point x; in the state-space X, the corresponding
measurement P(z;) will only be known to within some error. One might have
a model for the “noise” or error: p(y;|x;) = p(y; — P(x;)) where p() might, for
example, be a multivariate Gaussian probability density.

Example 1.1.1. If X is the instantaneous state of a fluid in some erperimental
setup (in which case X is infinite dimensional — from the point of view of the
Navier-Stokes equations), then the measurement might be the velocities at n points
in the fluid. In this case 'Y is R™ and P maps an infinite dimensional space into
R™.

The broad question we now have is, “How can we get back to the sequence of
states and/or the operator F' given some or all of the data {...,y 2,y 1, %0, Y1, Y2, ... }?”
Getting “back to the sequence of states and/or the operator F' ”, obviously includes
obtaining information clearly contained in state and operator knowledge. But I
would also include recovery of information which is in principle obtainable, but in
fact difficult to obtain, from state and operator knowledge.

The four papers in this dissertation look at a few aspects of this question.
Papers 1-4 are contained in chapters 2-5 respectively. In chapter 2, I settled a
controversy concerning the test proposed by Hinich and Wolinsky which — they
claimed — detected aliasing in some sampled stationary processes. They were right
and I explained why. In chapter 3, I showed that one could drop the assumption
of stationarity, look instead at samples drawn from a single waveform and still
get detection of aliasing. The key concept, which was completely new, was that
of sampling stationarity. In chapter 4, I examined the question of tomographic
reconstructions of dynamically evolving 3-dimensional objects from a series of 2-
dimensional projections or radiographs, all from one viewing angle. While the work
in chapter 4 was original for me, some of the work turned out to have similar or
identical precedents. What was new was the concept of reconstructing a single
object from a minimal number of radiographs. All of the previous work except
Aeyels paper [1] kept the dynamics governing time evolution fixed while varying
the measurement function, while I looked at the case of fixed measurements and
variable dynamics. The key proofs were original (since the theorems were new to
me) and I believe that the approach to reconstruction through the Extended Lin-
ear Transverse Intersection Theorem (Theorem 4.6.2) is also new. In chapter
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5 (paper 4) I have carefully dissected a concept defined by Fraser for the purpose
of measuring model fidelity. In this case our task is not so much the solution of
an inverse problem, but rather the evaluation of a proposed solution. What is
new here is the careful explanations of the different types of Sinai-Ruelle-Bowen
(SRB) measures and their relationships as well as the role finite precision plays in
the computation of Lyapunov exponents. Theorem 5.5.1 and Conjecture 5.5.1 are
new. Theorem 5.5.5 is also new.

The publication status of the papers are as follows. Chapter 2 has been pub-
lished in the proceeding of ISSPA ’99 [102]. Chapters 2,3, and 4 are on the LANL
e-print archive [102, 101, 100]. I have been invited to submit chapter 4 for the
proceedings of a special session of the 2001 New Orleans AMS meeting in which I
gave an invited talk.

1.2 Tutorial on Aliasing

The sampling of continuous time signals or the subsampling of discrete signals
almost always involves a loss of information. This is certainly not surprising.
What is often surprising to the uninitiated is that there are important instances in
which nothing is lost in the process of sampling! In this section we explain what
aliasing is and why it can be avoided by proper sampling. In the following section
we will denote the convolution of two functions fi(u) and fo(u) by fi(u) * fo(u).
We will denote the pointwise product of the same two functions by fi(u) - fa(u).
We shall also be careless about the fact that while f might be a function, f(u) is
a particular value of that function, by using f(u) to denote both the function and
the values the function might attain.

Question 1. Suppose that a continuous time signal f(t) is sampled or measured
at the times iAT where i = ...,—2,—1,0,1,2, ... and AT is some sampling interval.
If one throws away the rest of the signal and keeps only the samples, how much has
been lost?*

Answer: Almost everything — (see figure 1.1)

But as mentioned above, there are important cases in which nothing is lost!

!To answer this in detail requires the consideration of generalized Fourier transforms
and tempered distributions. We will present only an intuitive explanation, but include
references at the end of the subsection for the details.
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SN apd VQV‘%

i=-3 i=z-2 i=-1 i=0 i=1 i=2 i=3 i=4

t=IAT

Figure 1.1: Each signal has the same set of samples at the sampling times and
therefore cannot be distinguished on the basis of the samples

We introduce the notation and terminology now. Consider a signal f(¢) and let
F(w) be it’s Fourier transform (where w is in cycles per time-unit, not radians per
time-unit). Suppose that the support of F'(w) is contained in the interval [—wp,, wp]
(i.e. F(w)=0forallw ¢ [—wp,ws]). Suppose also that we have sampled the signal
f(t) every At time units. This will give us a sampling rate of R, = 1/Ar.

Definition 1.2.1 (Proper Sampling). If R, > 2wy, then the signal f(t) is said
to have been properly sampled.

We now present a result which many find amazing at first glance.

Theorem 1.2.1 (Shannon Sampling Theorem). If a signal is properly sam-
pled, the samples alone are enough to reconstruct the original signal! (see figure 1.2)

Explanation: We begin with some Suggestive reasoning: If two signals f;
and f, have exactly the same samples every A7 then, it must be the case that
g = f1 — fo is zero at each of the sampling points. Now the only sinusoids that are
zero at these points are sinusoids with frequencies 1/2A¢t, 2/2At, 3/2At, etc. This
suggests that the Fourier expansion of the difference is made up of components
with frequencies that are greater or equal to 1/2A¢. Graphical “proof”: recon-
structibility of a properly sampled waveform can be seen to be possible by simply
looking at the reconstruction convolution in both the time and frequency domains.
We do this in figure 1.2. In line (A) we see both the signal s(¢) and it’s Fourier
transform S(w). Line (B) shows the sampling function (also called the Sampling
Comb) and it’s transform. In the next line we see result of multiplying the signal
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and the sampling function (also called the sampling comb). Line (D) shows the
appropriate sinc function and it’s transform which permit the convolution shown
in Line (E) to perfectly reconstruct the signal. By the same argument, we can
see that if the support of the Fourier transform extends outside of the interval
(—1/2A71 < w < 1/2A7) then the reconstruction h(t) * (s(t) - da(t)) will not in
general be equal to the the original signal s(¢) (see figure 1.3). The error or differ-
ence within (—1/2A7 < w < 1/2A7) between the transform of the reconstructed
signal and the original signal’s transform is termed aliasing. (see figure 1.3) Actual
Details: See remark 1.2.1. End of Explanation.

Remark 1.2.1. When does the Shannon sampling theorem hold? That is, in our
intuttive explanation above, we said very little about assumptions of the theorem.
In fact, we are interested in the case of persistent signals which have only distri-
butional Fourier transforms which are in fact tempered distributions. One can
show that in fact the sampling theorem holds for any finite sum of sinusoids and
in fact does NOT hold for arbitrary functions which have generalized transforms
(tempered distributions), but we believe that assuming the Shannon reconstruction
works probably doesn’t limit the type of persistent, bounded signal one is working
with. (See lesson 38 of [34]as well as [60] and the references found there for more
discussion of the reconstruction of signals from their samples in the case the signal
DOES NOT lie in 1?)

Finally, we define a few related terms which some readers may be unfamiliar
with.

Replication Phenomenon For this we refer the reader to line C of figure 1.2
in which the transform of the sampling function or comb is convolved with
the transform of the signal to get another transform which is the sum of a
bunch of shifted replications of the original transform. This is the replication
phenomena to which we will later refer. Notice that aliasing is nothing more
than the overlap caused by having the “tines” of the comb transform too
close together which in turn is caused by having the “tines” of the sampling
comb itself to far apart (undersampling!).

Nyquist Frequency twice the highest frequency in the Fourier transform of the
signal. In other words the Nyquist frequency is defined for any signal to be
twice the highest frequency in the Fourier spectrum of that signal. If a signal
is not bandlimited, then the Nyquist frequency is cc.



6 Chapter 1. Introduction
Nyquist A7 The time increment equivalent to 1/fy, where fy is the Nyquist
frequency in cycles per time unit.

Nyquist Limited Data Samples taken from a signal at a rate high enough to
ensure proper sampling.
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Figure 1.2: The reconstruction of a signal from it’s samples via a convolution.
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fi(t) F(w)
<=>
! /u\—-\
1 1
0 0
s(t) Stw)
¢ N 7’ 7 N
| | | | ‘ | | ’,/ \\_\<, \__}// \__)// A\
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LU —2AT1 A1 0 At 2At LU 0
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~.’ Se ‘\’- ’-.\
/ .-
s ~

-2At 0 12AT

0
h(®)« (s(t)- dp; (1) H(@) * (Sto)* Dy ©))

Figure 1.3: The reconstruction of an undersampled signal from it’s samples via
a convolution. Second line, right: The dashed lines are the summands which
sum to the transform, S(w) * Da,(w), shown by the solid line. Bottom Line,
left: The solid line is the result of the convolution h(t) * (s(t) - da,(t)) — i.e. the
Shannon reconstruction from the samples. The dashed line shows the original signal
for comparison. Bottom Line, right: The solid line shows the transform of the
reconstructed signal (H (w)-(S(w)*Dar(w))). The dashed line shows the transform
of the original signal for comparison. The difference between the dashed and solid
lines within the interval (—1/(2A7),1/(2A7)) indicates the degree to which the
high frequency information is “polluting” the low frequency reconstruction, i.e.
the degree of aliasing present.



Chapter 2

The Bispectral Aliasing Test: A
Clarification and Key Examples

Kevin R. Vixie !

2.1 Preamble

Controversy regarding the correctness of the bispectral aliasing test proposed by
Hinich and Wolinsky [39] has been surprisingly long-lived. Two factors have pro-
longed this controversy. One factor is the presence of deep-seated intuitions that
such a test is fundamentally impossible. Perhaps the most compelling objec-
tion is that, given a set of discrete-time samples, one can construct an unaliased
continuous-time series which exactly fits those samples. Therefore, the samples
alone can not show that the original time series was aliased. The second factor
prolonging the debate has been an inability of its proponents to unseat those ob-
jections. In fact, as is shown here, all objections can be met and the test as stated
is correct. In particular, the role of stationarity as prior knowledge in addition to
knowledge of the sample values turns out to be crucial. Under certain conditions,
including those addressed by the bispectral aliasing test, the continuous-time sig-
nals reconstructed from aliased samples are non-stationary. Therefore detecting
aliasing in (at least some) stationary continuous-time processes both makes sense
and can be done. The merits of the bispectral test for practical use are briefly

!The research for this chapter was done in collaboration with Murray Wolinsky and
David E. Sigeti. The chapter has been published in the ISSPA ‘99 proceedings [102]
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addressed, but our primary concern here is its theoretical soundness.

2.2 The Bispectral Aliasing Test

The domain of the discrete-time bispectrum is the two dimensional bifrequency
{w1,ws} plane. Assuming a real-valued discrete time series (sampled at integral
time values), the usual replication phenomenon dictates that all non-redundant
information is confined to the square 0 < wi,ws < m. When one fully accounts
for symmetries, the non-redundant information in the bispectrum is confined to a
particular triangle inside this square [18, 107].

This triangle naturally divides into two pieces. One piece is an isosceles triangle
and is unproblematic. The other piece, somewhat unusual in shape, is the source
of the controversy under discussion. Naive consideration of this triangle shows that
it involves frequencies higher than the Nyquist frequency and therefore must have
something to do with aliasing. Hinich and Wolinsky considered this more carefully
and showed that the naive intuition is correct: if the discrete time series arises from
sampling a stationary, band-limited, continuous-time process, and if the sampling
rate is sufficiently rapid to avoid aliasing, then the discrete bispectrum is non-zero
only in the isosceles triangular subset of the fundamental domain. Conversely, if
the bispectrum of a sampled stationary continuous-time process is non-zero in the
outer triangle, then the sampling rate was too slow to avoid aliasing.

It should be clearly understood that there is no assertion that aliasing in gen-
eral can be detected. The statement is not “if a signal is aliased, then the outer
triangle will have a non-zero bispectrum.” Rather, the assertion is the converse, “if
the outer-triangle shows a non-zero bispectrum, the (underlying) continuous-time
signal must have been aliased.”

At one level, this result is obvious and, in fact, the result was initially so-
regarded [83]. However, doubt soon arose. Perhaps the most important source for
suspicion is the argument based on reconstruction alluded to above.

In light of this objection, one is led to reconsider the association of the outer
triangle with aliasing. One can take the position that there is no relation, as in [32].
One can decide that something is aliased, but that it is the bispectral estimator
rather than the signal. (That is, the method of estimation of the bispectrum is
introducing spurious data in the outer triangle). There is some plausibility to this
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claim, for the frequencies that are involved in the outer triangle are w;,ws, and
wy + we — 2m. This seems to be the position of Pflug et al. [53].

Or, one can try to delineate the conditions, if any, under which the test makes
sense. This was done by Hinich and Messer in 1995[38]. They confirmed the
validity of the original argument and stated its conclusions more carefully. In
particular they conclude that a non-zero bispectrum in the outer triangle indicates
a non-random signal or one of the following:

e a random, but non-stationary signal ;
e a random, stationary, but aliased signal, or;

e arandom, stationary, properly-sampled signal which violates the mixing con-
dition.

We believe that the analysis of Hinich and Messer, while entirely correct, did
little to persuade the detractors of the test. In particular their analysis did not
address the reconstruction objection and may have left the impression that the
circumstances for which the test applies are unlikely to be met in practice.

In this paper, we show that the reconstruction objection is far from fatal. We
further establish that stationarity is the only property which is crucial to the test.
Since this property is required in order to define the bispectrum, one can legiti-
mately apply the aliasing test whenever one is entitled to compute a bispectrum.
Therefore the bispectral aliasing test is as theoretically sound as the bispectrum
itself.

2.3 The Selection Rule and Brillinger’s Formula

The bispectrum, defined to be the triple Fourier transform of the third-order auto-
correlation, reduces to a function of two frequencies since stationarity confines the
spectrum to the plane through the origin of the frequency domain perpendicular
to the vector (1,1,1). The defining equation? is given by

2In this equation and the next we introduce notation that may be unfamiliar to some.
123 is the 3-dimensional or triple Fourier Transform, c3(t1,t2,t3) = (x1(t1)z2(t2)x3(t3))
is the third order auto correlation of the stochastic signal z(t), b(w1,ws) is the bispectrum
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Si23(ca(ty, te, t3)) = b(wr, we)d(wr + wa + ws). (2.1)

Another way of computing the bispectrum is to switch the order in which
one does the Fourier transforming and the ensemble averaging. This leads to the
following result.

b(wy,ws) = (X (w1) X (we) X (w3 = —w1 — we)) (2.2)

If the process is band-limited and X (w) = 0 for |w| > , then the bispectrum is
confined to the intersection of the (1,1, 1) plane and the 7m-cube (i.e. (wy,ws,ws) €
[—7,m)® [—m,7) ® [-m,m) ). The plane and its projection onto the (w;,ws) plane
is shown in Figure 1. Upon sampling with unit time step, one obtains the usual
replication in three dimensions. (Doing everything in 3-dimensions and projecting
at the end keeps things simpler and makes it easier to avoid errors.) In particular,
one gets that if the process is sampled at a frequency greater than twice the highest
frequency component, then the bispectrum is confined to the replications of the
tilted hexagon shown.

Figure 2.1: The origin of the bispectral fundamental domain

The replication gives the discrete-time bispectrum by:

ba(A1, Az, Az) = Z b(wy, wa, ws). (2.3)

w1 +w2+wz=0

(which this equation is defining) of the stochastic signal z(¢) and é(w; + w2+ ws) is simply
the Dirac delta of w1 + wy + w3. Note that the frequency that corresponds to t¢; is w; for
i = 1,2, and 3. In the next equation we use X (w) to denote the Fourier transform of

z(t).
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where w; = A\; + 27k for integer k.

Since the replication does not cause any overlaps, the outer triangle remains
empty. This is the Hinich and Wolinsky aliasing theorem. (Note that the outer
triangle is equivalent to the bigger triangle with vertices (0,m,0), (0,0,7) and
(0,7, 7) by symmetries. See [18, 107] for details.)

2.4 The Reconstruction Objection

Suppose we have a stationary process z(t) and we under-sample it by sampling
at t € Z. Then by convolving x(t) with the appropriate sinc function we get a
reconstructed process z,.(t). This new process will have exactly the same samples
as the original process and therefore exactly the same sampled bispectrum: yet it
is not aliased. Therefore for any process that is under-sampled, we have another
process producing an identical sampled process which is not under-sampled, show-
ing that that one could not possibly detect aliasing via the bispectrum computed
from samples!

The rub here is the fact that the reconstructed signal will not necessarily be
stationary. Processes reconstructed from aliased samples of continuous-time signals
are generally cyclostationary but not stationary. Some aliased processes do, in fact,
reconstruct into stationary processes. But in the class of stationary signals for
which the bispectral aliasing test gives positive results, reconstruction from aliased
samples produces non-stationary processes.

To carefully illustrate this we will consider several stationary processes gen-
erated by taking a periodic signal with period T and giving it a random shift
6 € [0,T). In this section, we will use units of cycles per second (cps) for fre-
quencies, often giving the corresponding radians per second (rad/s) figure. First
consider a simple cosine process,

x(t) = cos(2wat + 2mad), (2.4)

where oo = .75, and 6 is randomly chosen from [0,4/3). Upon sampling and recon-
struction we get the cosine process given by

z(t) = cos(2mat + 2wad), (2.5)
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where & = —0.25.3

The key idea is that the signal appears at the lower frequency as dictated by its
replication into the fundamental region of the frequency space — [-.5,.5) in cycles
per second or [-m,7) in radians per second — but its reconstructed phase term is
the same as the “source” component phase term.

Now consider

z(t) = cos(2mat + 2mal) + cos(2n Gt + 27 56), (2.6)

where o = 1.0, 8 = 3.0, and @ is chosen randomly from the interval [0,1). The
reconstructed process one gets is

z(t) = cos(2mémt + 2mal) + cos(frt + 21 50), (2.7)

where & and B are the aliased frequencies. Although the phase terms 2waf and
2736 remain unchanged, they now correspond to different time shifts so that we
no longer have a single shifted waveform. In the case that we sample every time
unit & = B = 0 so that, by an unfortunate accident we have chosen to sample
commensuratly with the signal period. If we choose another sampling time, and
with probability 1 a random choice of sampling time will not lead to this problem,
we get a reconstruction with two non-degenerate sinusoids. For example, if we
choose At (our sampling interval) to be e = 2.71..., then we get a non-trivial
reconstructed process that is shown in figure 2.2. The key idea is that the stochastic
shift # will now NOT correspond to a time shift since the factors multiplying the
shift no longer correspond to the frequencies of the components in which they
appear. This might be difficult to see. First one should be convinced of the fact
that if the factor multiplying time divided by the factor multiplying € is the same
for each component, then the effect of different # is simply a rigid translation
of the entire waveform. Next, one should verify that as long as € is uniformly

3If we sample the signal cos(2mat + 2maf) to get cos(2maiAt + 2maf) we see that
there are a countable number of possible sources for the samples since cos(2raiAt +
2nalf) = cos(2wailAt + 27ki + 2waf) k € 7Z, and we can manipulate this to get
cos(2m(a + k/At)iAt + 2maB) so that choosing the single sinusoid with frequency (
in cps) in [-1/2A¢,1/2At) means that the reconstructed waveform will be exactly
cos(2m(a + kq/At)iAt 4 2maf) where kf is the unique integer such that o + ky/At €
[—1/2At,1/2At). This special frequency — o + ky/At — is called the aliased frequency.
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chosen from [0, a) and changing # from 0 to a moves the entire waveform exactly
one period, then the process is stationary — i.e. statistics computed at any point
in time will be the same as those from any other point in time.

Since 2w /2w = 273 /27 5 our original signal certainly has the rigid translation
property. And since changing € from 0 to 1 indeed translates the waveform by
one period, we have that the original process is stationary. On the other hand
it will generically be the case that 27r&/2ra # 2%6/27rﬂ and the reconstructed
waveform will not have the rigid translation property. Therefore we expect that
the reconstructed signal will have periodic statistics.

Computation of the required expectations requires that one can “average over
the ensemble.” Since this stationary process is not ergodic, one can not get the
result from a single realization of the process. It is at this point that some differ-
ences in perspective arise. Strictly speaking, in order to compute a bispectrum one
must perform the ensemble average. A single realization does not suffice unless the

process is ergodic.

Amplitude

Time

Figure 2.2: Cyclostationarity of a stochastic signal reconstructed from aliased
samples. The lower part of the figure is the superposition of a large number of
waveforms from the process. The outline of this lower part is the process en-
velope. (Remember that each point in the underlying probability space corre-
sponds to an entire waveform.) The sampling interval is e. The upper curve is
the sixth moment, chosen for ease of display. The original process is given by
z(t) = sin(2rat + 2wal) + sin(27 5t 4+ 27 40) with « = 1.0, 8 = 3.0, # € [0, 1), and
At =e=2.T1....

Finally, consider the process defined by
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x(t) =cos(2m(5/20)t + 5 - 270)+
cos(2m(6/20)t + 6 - 2m6)+ (2.8)
cos(2m(—11/20)t — 11 - 270)

where 6 is chosen randomly from [0,1).

Because, as explained above, changing 6 rigidly translates the entire waveform
over one period, the process is stationary and the bispectrum may be computed.
This process has a spike in the bispectrum at (5/20 cps, 6/20 cps) or in radians/sec,
a spike at wy = 10/207, wy = 12/20m, which is in the outer triangle (again, see [107]
for details concerning the outer triangle). The reconstructed signal is given by

z(t) =cos(2m(5/20)t + 5 - 270)+
cos(2m(6/20)t + 6 - 2m0)+ (2.9)
cos(2m(9/20)t — 11 - 270)

which is not stationary. Therefore we have a signal with nonempty outer triangle
whose reconstruction is not stationary. This situation is exactly what the bispec-
tral test implies happens whenever the outer triangle is nonempty. The loss of
stationarity causes the Fourier transform of the triple autocorrelation to “move
off” of the (1,1,1) plane.

Therefore, if one knows (or is willing to assume) that the process which gen-
erated the observed samples was stationary, one can rule out the unaliased re-
construction as the source of the samples. In a sense, the continuous time signal
reconstructed from aliased samples of an original time series is a “measure zero”
object. This result is very surprising to most people’s intuitions. In chapter 3 we
define a concept of stationarity appropriate for single waveforms allowing us to
study the detection of aliasing outside of the framework of stochastic processes.

2.5 The Replication objection

Upon looking at Equation 2.2 one may observe that even if X(w) = 0 for |w| > T,
sampling effectively fills in the spectrum at higher frequencies. This is the basis
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for the objection appearing in Swami [95]. This concern is addressed as follows.
While the spectrum does indeed fill out upon sampling, the undesired expecta-
tions remain zero. Consider a (statistically stationary) ensemble constructed by
uniformly translating a periodic or finite-duration waveform z(t). Two operations
are necessary to produce the discrete-time ensemble; a uniform shift in time over
a period 7', which introduces linear phase factors, and sampling, which produces
spectrum replication. These operations do not commute: i.e., one wants to time-
shift the waveform first and then sample, rather than to shift its samples. For the
shifted samples z(t + 0) one finds

F(zs(t+0)) = %F(x4(t)) (2.10)

But for the sampled shifted waveforms z(t + )|,
to construct a stationary ensemble, the phase of the original signal is propagated

i.e., the waveforms needed

to higher frequencies periodically rather than linearly. This difference leads to the
vanishing of unwanted expectations.

For example, consider the process given by the randomly shifted sum of unit
amplitude cosine waves with frequencies at n/20 (rad/s) where n takes integer
values from 1 to 19. The sampled spectrum has components at w; = 107/20,
wo = 117/20 and w3 = —217/20 but the average

(X (w1) X (w2) X (w3)) (2.11)

reduces to

(1007 gi110m gil0my (2.12)

where 6 is chosen with uniform probability from [0,1). This average vanishes.
Therefore, the potential contribution in the outer triangle is zero because averaging
kills it. This is in contrast to the case where the average is zero because the spectral
amplitudes are themselves zero (as in the proof of the aliasing test).
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2.6 Empirical counter-examples

Other objections to the test have been made. Frequently these objections involve
a (purported) counter-example to the bispectral aliasing test. A particularly clear
example is provided by Frazer, Reilly and Boashash [32]. Here the authors do two
things. They present an example of an aliased signal which the aliasing test fails
to mark as aliased. The example is unproblematic: neither the aliasing test nor
any aliasing test we are aware of will detect all aliased signals. It is not, however,
a counter-example to the test. Since there is nothing in the outer triangle, the
bispectral aliasing test makes no assertion regarding the presence of aliasing.

The other example the authors provide is more interesting. It consists of a signal
involving coupled sinusoids at w; = 0.3125Hz2, wy = 0.25Hz and w3 = .4375Hz
and the authors show that there is a peak in the outer triangle under conditions
which rule out aliasing. As the authors note these frequencies sum to 1 Hz ((the
sampling rate). Under these conditions the authors are correct in asserting that the
aliasing test gives a positive result, which they believe to be incorrect. However,
what the aliasing test actually indicates is that this signal is non-stationary. The
particular interaction which the authors have constructed is not one for which the
continuous-time selection criteria is met, i.e., the frequencies involved do not sum
to zero. Therefore, even though the samples of this signal do meet the discrete-
time stationarity condition, the underlying continuous time signal does not meet
the stationarity condition and consequently this signal does not provide us with a
counterexample to the aliasing test. Since details of the signal generation are not
given (for example, exactly what filter was used to low-pass filter the data?), it
is not clear where, in the processing, the signal loses stationarity — if it ever was
stationary.

One can look at these results in various ways. Our position is that neither
example constitutes a counter-example to the validity of the aliasing test in theory,
though they both show that the test is limited in practice. The first example
shows that there are aliased signals which the test does not see. This is obvious
anyway since there are signals with zero bispectrum whose samples can be aliased.
The second example shows that the term “aliasing test” must be restricted to
stationary signals. As stated earlier, this restriction is inherent in the definition of
the bispectrum.
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2.7 Conclusions

So, is this something for nothing? How can one get information about higher
frequency amplitudes from what is usually thought of as Nyquist-limited data?
The answer is of course that the assumption of stationarity is far from nothing.
But, to exploit stationarity one must be able to perform the ensemble averaging
indicated in the definition of the bispectrum. This implies that one must either
have an ergodic process or have access to sufficiently many sample paths.

It is certainly possible that, in practice, the bispectrum can be usefully applied
to signals for which there is no theoretical justification. For such uses the aliasing
test is silent. However, it is essential that a clear understanding of the fundamental
properties of higher-order spectra be available. And the present authors believe
that correct understanding of the outer triangle leads to deeper insight of the
meaning of the bispectrum in general.
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Chapter 3

Detection of Aliasing in Persistent
Signals

Kevin R. Vixie !

3.1 Introduction

Detection of aliasing from temporal samples alone, with no restrictions on the
original continuous-time source, is impossible because any set of samples may be
reconstructed (using convolution with the sinc function) to a properly sampled
signal having the same samples. However, quite often additional information about
the source is available. It is, of course, obvious that tight constraints on the source
would permit perfect reconstructions of vastly under-sampled signals. For example,
the constraint that the data comes from a linear function of time makes any two
samples sufficient. A less extreme example is a signal with a lower as well as an
upper frequency cutoff (a bandpass signal). For bandpass signals, it is well-known
that one can sample at a rate below twice the highest frequency while still achieving
perfect signal recovery (see [48, p.138, theorem 13.3]).

What are the weakest constraints that one can put on the signal and still get
something—detection of aliasing, for example? Here, we examine constraints of
stationarity. In 1988 Hinich and Wolinsky [39] suggested a bispectral test for

!The research for this chapter was done in collaboration with David E. Sigeti and
Murray Wolinsky.
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detecting aliasing in temporally sampled stationary stochastic processes?. The
test aroused some controversy [95, 32| which is examined in [38] and chapter 2.
In chapter 2 we show, in detail, that the test does detect aliasing in some signal
processes and that it is the constraint of stationarity that makes the detection
of aliasing possible. Briefly, if we under-sample a stationary process and then
reconstruct a continuous-time signal from the samples using the Shannon sinc
filter, the reconstructed process will not, in general, be stationary. In contrast, a
proper sampling followed by reconstruction will not destroy stationarity because
this procedure just reconstructs the original signal. Detecting non-stationarity in
the reconstructed process thus suffices to establish the existence of aliasing in the
time series, provided it can be assumed that the original signal was stationary.
These results are reviewed in Section 3.3.

Applying these concepts requires either a random sample of the paths of the
process or an assumption of ergodicity which makes it possible to extract statistics
from a single sample path. In this paper we attempt to generalize the results for
stationary processes to the more common case where we have only a single sample
path and can make no assumption of ergodicity. In other words, we look for ways
to discover under-sampling in a time series drawn from a single waveform, which
may or may not be a sample path of some underlying stochastic process. We define
sampling stationarity, a form of stationarity that makes sense for single waveforms,
and show that it can be used to detect aliasing in complex, continuous-spectrum
signals. We present reasons to believe that sampling stationarity should be a
generic® property of signals and that the destruction of sampling stationarity by the
process of under-sampling and reconstruction should occur quite generally. Finally,
we explain how it might be possible to use the reconstructed sample statistics plots
(RSS plots) that we use to detect aliasing to obtain additional information about
individual Fourier components beyond the Nyquist frequency.

The remainder of this paper proceeds as follows. After illustrating the key idea
of this paper with an example in Section 3.2, we proceed, in Section 3.3, to demon-
strate how a constraint of stationarity permits the detection of under-sampling in

2Tn the following, we will use the terms signal process or just process for stochastic sig-
nal processes. Except when we use the terms sample path for a realization of a stochastic
process or random sample, the word “sample” will refer to temporal sampling.

3We use the term generic in a nontechnical sense. The term usually occurs in a situ-
ation where one would like to say “with probability 1” but where no obvious probability
measure exists.
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some signal processes. Then in Section 3.4 we define sampling stationarity. In
Section 3.4.1 we use examples to show that the concept of sampling stationarity
does, indeed, enable detection of aliasing for nontrivial signals. In Section 3.4.2
we consider the case of periodic signals. For this class of signals, we provide a
complete explanation of how (and when) the method of high-frequency detection
works. The possible extension of this explanation to non-periodic signals is then
discussed in Section 3.4.3. In Section 3.4.4, we present some reasons to believe that
the plots that we have used to detect aliasing may also be used to recover some
portion of the original signal’s high-frequency content. This is followed by sugges-
tions for further work (Section 3.5) and a conclusion that summarizes the work in
this paper (Section 3.6). Two after-notes contain computational and mathematical
details.

3.2 Example

The key idea of our approach is captured by a very simple example. Suppose that
we sample a square wave that takes the values —1 and 1. There is a unique properly
band-limited signal that has this time series as its samples. We can compute this
signal by applying the Shannon sinc filter to our time series. We may regard this
computation as an attempt to reconstruct the original continuous-time signal. If
we can reject this reconstructed signal as the source of our samples, then we must
conclude that the time series contains aliased components.

Note that our given time series consists only of —1’s and 1’s. The reconstructed
signal, on the other hand, is necessarily a continuous function of time, taking on
all values in the interval [—1, 1] (and, in fact, beyond). The only way that we could
have obtained a sequence of —1’s and 1’s by sampling the reconstructed signal is if
we had chosen a particular sampling rate (or one of its sub-harmonics) and a unique
shift of the sampling comb. Any other combination of sampling rate and shift
would have produced a series that takes a continuum of values. The probability
of having chosen the special sample rate and shift that give a sequence of —1’s
and 1’s is clearly zero, provided that our sampling rate was chosen independently
of the source. With this proviso, then, we can reject (with confidence level 1) the
hypothesis that our time series consisting of —1’s and 1’s came from sampling the
reconstructed signal.

The assumption that the sampling rate was chosen independently of the source
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is justified in most (but not all) cases of practical importance because we can rule
out any interdependence between the source and the sampling rate on physical
grounds. For example, if a signal produced by a distant source is sampled at
a predetermined rate, such a coupling is clearly out of the question—it would
amount to believing that the process that produced the signal “knew” when we
were going to sample at a distant location.

We can draw valid conclusions from a sampled signal about Fourier compo-
nents beyond the Nyquist frequency only if we can put constraints on the original
continuous-time source. How can we characterize the constraints that we are im-
posing in this case? Effectively, we are assuming that the sample times (which are
determined by the sample rate and shift) do not play a distinguished role in the
source. Showing that the sampling times are distinguished in the reconstructed
signal then suffices to reject the reconstructed signal as the original source of the
samples.

How, then, can we extend this analysis to more general classes of signals? In
the case of a square wave (or any signal that takes on a finite number of values),
the appearance of the time series produced by sampling the reconstructed signal
at the given sampling times could not be more different from the appearance of a
time series produced by sampling at any other shift of the sampling comb. Thus it
is clear what we mean when we say that the sample times are distinguished in the
reconstructed signal. For more general signals, however, it is not so clear exactly
what it means for the sample times to be distinguished.

There is one obvious case in which we can be assured that the sample times are
not distinguished in the original signal and in which we can detect the distinguished
character of the sample times in the reconstructed signal. If the original signal is,
in fact, a stationary signal process, then, by definition, no time is distinguished.
The appearance of non-stationarity in the reconstructed signal would then indicate
the presence of aliasing in the time series. The detection of aliasing in time series
from stationary signal processes is the subject of the next section. Following that,
we use our example of sampling from a square wave and insights from the case
of stationary processes to develop a method for detection of aliasing in single
waveforms.
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3.3 Detection of Aliasing in Stationary Processes

Consider the case of detection of aliasing in stationary signal processes. We start
with the simplest stationary processes imaginable—randomly shifted periodic sig-
nals. If we have a waveform, x(t), with period 7', then we can produce a stationary
process by adding to ¢ a random time shift, 6, that is evenly distributed on [0, 7).
A sample path of our process then has the form z(¢ + ) for a particular choice of

6.

Consider then the effect of under-sampling and reconstruction on a simple sine
process,
x(t) = sin(2w ft + 27w f6), (3.1)

where 6 is evenly distributed on [0, f~!). If we under-sample with a sampling
interval At, corresponding to the Nyquist band [—(2At¢)7!, (2A¢)!), and then
reconstruct via convolution with the sinc filter, we get the sine process given by

z,(t) = sin(27 ft + 27 f6). (3.2)

Here, f is the aliased frequency, given by f = f + k;/At where ks is the unique
integer that places f in the Nyquist band. The key point is that the phase of
the reconstructed signal is the same as the phase of the source even though the
frequency has changed to the aliased value f. For a process with a single harmonic,
the reconstructed signal remains stationary because the phase term, 27 f0, is evenly
distributed on 27.

Consider then a second signal process,
z(t) = sin(2wat + 2waf) + sin(2n St + 2756), (3.3)

where ( is an integer multiple of o and € is chosen randomly from the interval
[0,a7!). Since the time shift, @, is the same for both components, this is, for the
various values of 6, just a shifted waveform of a given shape. Since 6 is evenly
distributed over the period, o', the process is stationary.

If we sample this process at a rate low enough for both components to be aliased
and then reconstruct using the sinc filter, we get

2, (t) = sin(2rét + 2wab) + sin(2n Bt + 27 46), (3.4)

where & and B are the aliased frequencies. Although the phase terms, 2raf and
2750, are still evenly distributed over 27, they now correspond to different time
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Amplitude

Time

Figure 3.1: Plot illustrating the non-stationarity of a randomly shifted waveform
that has been under-sampled and then reconstructed. The upper curve is the sixth
moment®. The lower curve shows the process envelope. The original process is
given by Equation 3.3 with = 1.0, § = 3.0, § € [0,1), and At = e = 2.71... .
(Another way of looking at the process envelope is that it is the area covered by
graphs of all signals in the process — stationarity would imply no structure along
the time axis).

shifts for the two components. Thus, we no longer have a single shifted waveform
and we can expect, in general, that stationarity will have been lost.

We illustrate this loss of stationarity on an example by setting @ = 1.0 and
B = 3.0 in Equation 3.3 and choosing a sample time, At, equal to e = 2.71... . We
may detect the loss of stationarity by examining the envelope of the reconstructed
process. We define the envelope of a process, X;, as the support of the probability
density of X; as a function of £. Another definition that would often coincide is
that the process envelope at time ¢ is the smallest interval containing the support
of the process at time t. For a process produced by randomly shifting a periodic
waveform, the envelope may be conveniently displayed by plotting the sample paths
corresponding to a representative collection of time shifts as in Figure 3.1. Clearly,
a stationary process must have a constant envelope. If we compute the envelope
for the process defined in Equation 3.4 with the parameter values that we have
specified, we get an oscillating figure (see Figure 3.1). This implies that the signal
is non-stationary. In fact, it is cyclostationary with period equal to the sampling
interval.

5The sixth moment was chosen for clarity of presentation. The second moment re-
mains constant in this case. The fourth moment does oscillate but the scale of its
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As explained above, we do not lose stationarity when our original signal is a
single sine wave. Nor do we lose stationarity when ratios between frequencies are
preserved under the aliasing. For example, if At = 1.0 and the original frequencies
are (10/9,20/9,30/9), they would alias to (1/9,2/9,3/9) and we would obtain
another stationary process. But this situation is very special (non-generic). In
general, more than one Fourier component is present and we do not have the
special relationships between the sampling rate and the component frequencies that
preserve ratios between frequencies when under-sampling. Thus, we expect that,
generically, a stationary process formed by randomly shifting a periodic waveform
will lose stationarity upon under-sampling and reconstruction.

Within the context of single shifted waveforms, the destruction of stationar-
ity can occur in some remarkable situations. Consider that under-sampling and
reconstruction can break stationarity even when only one of the components (3,
say) is aliased and when (3 aliases to a or —a. In other words, stationarity can
be broken even when the two components, after under-sampling, lie right on top
of each other. We can see this by choosing @ = 0.25, § = 0.75, and At = 1.0 in
Equation 3.3. The envelope for the reconstructed process is shown in Figure 3.2
where the non-stationarity is apparent. (Of course, we cannot possibly detect this
loss of stationarity by examining only a single sample path, since the sample path
will never be more than a single sine wave of some amplitude and phase.)

Not all stationary processes are randomly shifted periodic waveforms. What
can we say about more general stationary processes? It is clear that, if there exist
no phase relationships between any of the Fourier components of the process, then
under-sampling and reconstruction will not destroy stationarity. For a generic
stationary process, though, we would expect at least some sets of components to
exhibit phase relations. In that case, we would expect stationarity to be destroyed
because it is difficult to imagine how the destruction of stationarity associated
with one set of components could somehow be canceled out by the presence of
other incommensurate components.

This argument, together with the observation that there is simply no reason to
believe that stationarity should be preserved under under-sampling and reconstruc-
tion, suggests that the loss of stationarity should be a general feature of stationary
processes.

oscillation is too small to allow meaningful display of the moment and the envelope on
the same scale.
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Figure 3.2: The sixth moment (upper curve) and the process envelope (lower curve)
of the process given by Equation 3.3 with a = 0.25, 8 = 0.75, # € [0,4), and
At = 1.0.

3.4 Detection of Aliasing in Single Sample Paths

The method that we have just used to detect aliasing in a sampled stationary pro-
cess requires complete knowledge of the discrete-time process obtained by sampling
the original continuous-time source. Usually, however, we have available to us only
a single sample path. Therefore, we require a method for detecting aliasing in a
single waveform which may or may not be a sample path of a stochastic signal
process.

We may develop such a method by reconsidering the example of sampling from
a square wave discussed in Section 3.2 in light of our discussion of the effect of
under-sampling on stationary signal processes. Recall that the sampled time series
from the square wave takes on the values —1 and 1. We may state this in statis-
tical language by saying that the one-time probability density of the time series
consists of two Dirac delta functions centered at —1 and 1, respectively. Now, we
would have obtained the same one-time statistics if we had sampled the original
square wave with any shift of the sampling comb. We will say that a waveform has
sampling stationarity for a given sampling interval if the one-time sample statistics
do not change as the position of the sample comb is shifted along the waveform.
Observing that the original square wave had sampling stationarity for the given
sampling interval is essentially equivalent to saying that the sample times were
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not distinguished in the source.® Note that the signal obtained by applying the
Shannon sinc filter to the time series does not have sampling stationarity—the
one-time statistics of the reconstructed signal vary dramatically with shifts of the
sampling comb (see Figure 3.3). This lack of sampling stationarity corresponds to
the distinguished role of the sample times in the reconstructed signal. Of course,
this distinguished role for the sample times is what allowed us to reject the recon-
structed signal as a candidate for the original source of the samples and, thus, to
conclude that the sampled series contained aliased components.

This discussion suggests the following test for aliasing in signals (no underlying
stochastic process assumed). Collect the statistics on the recorded samples. Re-
construct the signal at various shifts of the sampling comb and collect the statistics
at these reconstructed samples. Compare with the original statistics. (We use the
term “statistics” loosely, without the assumption that the samples are independent
samples of some underlying probability distribution.) If we find that the recon-
struction has different statistics at some shift of the sampling comb, an assumption
of sampling stationarity for the original signal implies that the reconstruction is
not the original signal and therefore that the signal was under-sampled.

For this test to be at all useful, two questions must be answered:

1. Are typical signals characterized by sampling stationarity?

2. Do typical under-samplings reconstruct to signals for which sampling sta-
tionarity is violated?

The answer to question 1 is clearly “yes” for sample paths of ergodic stationary
processes and for signals from ergodic dynamical systems. It is also clear that
there are other classes of signals which possess sampling stationarity. For example,
general periodic signals (not just square waves) possess sampling stationarity if the
sampling interval is incommensurate with the signal period (a generic condition).
Below, we conjecture that sampling stationarity is a generic property of signals.

6Note that the original square wave does not have sampling stationarity for a sam-
pling interval equal to its period. In general, a periodic signal will not have sampling
stationarity with respect to sampling intervals commensurate with its period. However,
the set of sampling intervals that are commensurate with a given period has Lebesgue
measure zero. Clearly, the probability of choosing such a special sampling interval is 0
under the assumption that the sample times are chosen independently of the source.
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The examples that we consider next suggest that the answer to the second
question is also “yes”.
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Figure 3.3: Sample statistics of data and reconstruction from a square wave. The
plot shows sample statistics of the data in blue and green (which are indistin-
guishable) and the reconstruction in red. (See the beginning of Section 3.4.1 for an
explanation of the blue and green histograms.) The red histogram is obviously very
different from the blue and green with which it would coincide if the reconstruction
had sampling stationarity. The blue and green histograms have been rescaled so
as to make the three histograms of comparable height.

3.4.1 Examples

In each of the examples listed below, the time series to which we apply our test
for aliasing was split into two interleaving series, D; from the samples taken at
[0,2At,4At, ...] and D, from the samples taken at [At,3At, 5At,...]. The sample
statistics corresponding to D, and D, are plotted in blue and green, respectively.
For original signals with sampling stationarity, these two histograms will coincide.
We then produce a reconstruction from D, computed at the times correspond-
ing to Dy. The sample statistics corresponding to this reconstructed series are
shown in red. If the red histogram is significantly different from the blue, then the
reconstructed signal does not have sampling stationarity.

Example: For a periodic signal, the generic condition of incommensurability of
the sampling interval and the signal period implies that the signal has the property
of sampling stationarity. But we also find that under-sampling and reconstructing
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Figure 3.4: Sample statistics of data and reconstruction from a periodic signal. The
blue and green histograms coincide, indicating that the original signal had sampling
stationarity. The red histogram, showing the statistics of the reconstructed signal,
is obviously very different from the blue, showing that the reconstruction does not
have sampling stationarity.

produces a signal that does NOT have sampling stationarity, as illustrated in Fig-
ure 3.4. The data for the plot were generated by sampling (At = e/16) a sum of
sines with frequencies (0,1,2,...,10) and random amplitudes that ranged between
.78 and 1.22.

Example: If our signal consists of a sum of sine waves with incommensu-
rate frequencies, then we cannot detect aliasing by this method (see Figure 3.5).
Although such a signal will have sampling stationarity, the sampling stationarity
will not be broken by under-sampling and reconstruction because it is impossi-
ble to have relationships between the phases of different Fourier components (see
Section 3.4.2).

Example: The previous example might lead to the suspicion that this method
works only for periodic signals (or step signals such as the square wave). However,
the presence of incommensurate Fourier components does not necessarily destroy
the ability to detect aliasing in a periodic waveform with more than one harmonic
component. Figure 3.6 shows the result of combining a periodic waveform with
incommensurate harmonics. The total power in the incommensurate harmonics is
about 21% of the power in the periodic waveform. The sampling stationarity of
the original signal and the breakdown of sampling stationarity with under-sampling
and reconstruction are apparent. This shows that, as long as some of our aliased
Fourier components are commensurate with other components, the method can
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Figure 3.5: Sample statistics of data and reconstruction from a sum of sine waves
with incommensurate frequencies. The blue and green histograms coincide. The
red, showing the statistics of the reconstructed signal, is NOT obviously different.

work.

Example: So far, we have demonstrated that the method works for pure
periodic signals and for periodic signals mixed with incommensurate harmonics.
Figures 3.7, 3.8, and 3.9 show that the method works for much more complex
signals with continuous spectra. The signals are taken from the Lorenz and Rossler
systems (see section 3.7).
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Figure 3.6: Sample statistics of data and reconstruction from a mixture of a pe-
riodic waveform and incommensurate harmonics. The blue and green histograms
coincide. The red, showing the statistics of the reconstructed signal, is obviously
different.
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Figure 3.7: Sample statistics of data and reconstruction from the z-coordinate of
the Lorenz model. The blue and green histograms coincide and the red is clearly

different.

The success in detecting aliasing in time series from the Lorenz and Rossler
systems suggests that the method may work for a very broad class of signals.
Before attempting to determine how wide this class might actually be, we will look
at the periodic case in order to begin to understand the precise mechanism of the

method.
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Figure 3.8: Sample statistics of data and reconstruction from the x-coordinate of
the Rossler model. The blue and green histograms coincide and the red is clearly

different.
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Figure 3.9: Sample statistics of data and reconstruction from the z-coordinate of
the Rossler model. The blue and green histograms coincide and the red is clearly
different.

3.4.2 A Closer Look at the Periodic Case

If one samples a periodic signal incommensurately with the signal period, the
samples end up mixing evenly around the waveform (see section 3.8). Thus, all
shifts of a sampling comb with a sampling interval that is incommensurate with
the period will produce the same statistics. This implies that:

Theorem 3.4.1. A periodic signal will have sampling stationarity with respect to
any sampling interval that is incommensurate with the period of the signal.

Conversely, sampling with an interval that s commensurate with the period
will, in general, produce statistics that depend on the sampling shift. Theorem 3.4.1
implies that:

Theorem 3.4.2. Fvery periodic signal has sampling stationarity with respect to
all sampling intervals except for a set of intervals with (Lebesgue) measure zero.

Thus, the probability of choosing a sampling interval for which a given periodic
signal does not have sampling stationarity is zero, provided the interval is chosen
independently of the signal.

What, then, is the effect of under-sampling and reconstruction on this sampling
stationarity? The sample statistics are determined by the shape of the waveform
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(see section 3.8 for the exact formula). It can be shown that the process of under-
sampling and reconstruction is equivalent to sampling the original waveform at
the same rate with the individual Fourier components shifted with respect to each
other. When different components experience different time shifts, the shape of the
effective waveform changes. Consequently, the statistics change. We now explain
this in detail.

When we sample a single harmonic with frequency f and phase ¢ every At
time units, we get the values

yn =sin (27 fnAt +¢) ne Z. (3.5)
We will temporarily suppress the phase and rewrite this expression as

sin (27 fnAt) = sin (27 fnAt + 27kn)

o (1 £ ) o) &

for any integer k, so that the reconstruction of this component at points 1+ s,2 +
$,3 + s, ... is given by

Un,s = sin (27T (f + 2—’;) (n+ s) At> , (3.7)

where the reconstruction chooses precisely one of the integral k’s, which we will
call ky, such that f+k;/At is in the interval [—1/2At,1/2At). We can now rewrite
the reconstructed harmonic as

I ky kg
Un,s = Sin (27r <f + Kt) nAt + 21 (f + Kt) sAt)
= sin (27 fnAt + 2wk + 27 f At + 27kys)

= sin (27 fnAt + 27 fsAt + 27kys)

(3.8)

where we drop 27k sn since ky is an integer. Thus, the reconstructed signal has sam-
ples at a shift, s, as though we were sampling the original waveform, but with the
phase of the individual Fourier component shifted by the amount 2w f sAt + 2mkys.
The first term amounts to a time shift which is the same for all the components
in the waveform. This implies that these first terms do not change the shape of
the waveform and can be ignored. So we may consider the effective waveform (at
a shift s) to be

Z A;sin(2m finAt + 2nk s + ;) (3.9)

3
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where we have reinserted the phase. The term 27k, s amounts to a time shift that
is different for different f;. This difference in time shifts leads to a change in the
shape of the effective waveform as s changes which in turn changes the sample
statistics.

For a given waveform, it is clear that almost any change in the shape of the
waveform will change the sample statistics. (For example, a generic choice of s
will change the heights of the extrema, changing the locations of the singularities
in the histogram. See section 3.8.) Thus, we conclude that generically, periodic
sitgnals have sampling stationarity which is destroyed by under-sampling and recon-
struction.

3.4.3 Non-periodic Signals

Now, we want to use the insight that we have gained for the case of periodic signals
to get a better understanding of the answers to the two questions at the end of
Section 3.4. We begin with some general questions about the kinds of signals to
which our method might possibly apply.

Consider first the case of transient signals. In order to be able to talk about
sampling stationarity at all, we have to be able to take as many samples as we
want (at the given sampling rate) in order to be able to estimate the one-time
probability distribution to arbitrary accuracy. This implies that we must think
of our signals as functions of infinite time. In this context, any transient signal
has trivial sampling stationarity—the probability distribution is a delta function
at zero. By the same token, under-sampling and reconstruction will not destroy
this sampling stationarity. Thus, we need to restrict our attention to persistent
(non-transient) signals.

Within the class of persistent signals, it is clear that we need the signals that
we consider to have well-defined sample statistics for arbitrary sampling intervals
and shifts. Given that we are discussing aliasing, our signals also need to have
a Fourier transform (in some sense). The set of signals with well-defined power
spectra (which will have, in general, singular components) will clearly meet these
criteria, although the actual class to which our method applies may be larger. In
the following, then, we may take the term persistent signal to refer to a signal with
a well-defined, nonzero power spectrum.

Consider then the question of which signals have sampling stationarity for which
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sampling intervals. In the case of periodic signals, Theorems 3.4.1 and 3.4.2 pro-
vide what is essentially a complete answer—sampling stationarity holds for generic
choices of signals and sampling intervals. At first glance one might try to generalize
Theorem 3.4.1 to the following:

Conjecture 3.4.1. Fvery signal has the property of sampling stationarity for every
sampling interval At that is not commensurate with the period of any singular
component of its spectrum. (FALSE)

Unfortunately this conjecture is false as may be seen from the following coun-
terexample. If we under-sample and reconstruct a signal with a purely continuous
spectrum (such as our signal from the Lorenz system), we will introduce no new
singular components. Thus, the reconstructed signal will have a purely continuous
spectrum. If the conjecture were true, then, such a reconstructed signal would
have sampling stationarity for all sampling intervals by virtue of having no sin-
gular components. Yet it is just the lack of sampling stationarity of this signal
with respect to the given sampling interval that allows us to detect aliasing in this
case. Thus, we know that there exist signals that lack sampling stationarity with
respect to sampling intervals that are not commensurate with any singular compo-
nent of their spectra and the conjecture is false. However, the reconstruction of an
under-sampled signal has a very special relationship to the interval with which the
sampling was done. Thus, one expects that re-sampling the reconstruction with a
new sampling interval not related to the original interval will yield statistics that
are again stationary with respect to shifts in the sampling comb. Therefore, we
arrive at the following conjecture:

Conjecture 3.4.2. Every signal has the property of sampling stationarity for every
sampling interval At, except a set of At’s with (Lebesgue) measure zero.

This conjecture implies that, if one were to observe the reconstructed statistics
varying with changes in the shift, this observation would be enough to conclude
(with probability 1) that the samples came from an under-sampled waveform. In
other words, the truth of the conjecture would imply that the detection of under-
sampling by the proposed method is generically free of false positives

Next, we want to know when under-sampling and reconstruction of persistent
non-periodic signals will yield new signals which have the property of sampling
stationarity. (In other words, we also want to know when we can get false neg-
atives.) The analysis that we have presented for periodic signals suggests that
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under-sampling and reconstruction should destroy sampling stationarity for gen-
eral persistent signals in which at least some of the aliased Fourier components are
commensurate with other components of the signal”. The reasoning is that each
individual component can be regarded as a part of a family of harmonics and that
the effective shape of the waveform associated with this family is changing with
shifts of the sampling comb. There does not appear to be any reason to believe
that combining different periodic waveforms, each of which is changing its sample
statistics with shifts of the sampling comb, would result in sample statistics that
do not change. Therefore, it seems likely that, generically, persistent signals have
sampling stationarity that is destroyed by under-sampling and reconstruction. In
order to turn this last statement into a well defined conjecture, it will be neces-
sary to define precisely what is meant by “generically” in the case of persistent
non-periodic signals. The question of exactly how to define “persistent” must also
be answered. Since the transformation that takes us from a waveform to sample
statistics is extremely nonlinear, a proof is likely to be difficult.

3.4.4 Recovery of High-Frequency Information

The next question that presents itself is whether or not we can recover information
about individual aliased Fourier components using the sampling-shift dependence
of the reconstructed statistics. Ideally, we would like to know how much of the
signal at an individual frequency, f, in the Nyquist band comes from each frequency
that aliases to f.

Consider the one-time probability density of the reconstructed signal, p(x), as a
function of both x and shift s. We call this two-dimensional surface a Reconstructed
Sample Statistics (RSS) plot (see figures 3.10 and 3.11 for example RSS plots).

The RSS plot has dependencies on s tied directly to the quantities kf,. Each
kg, in turn, determines the particular copy of the Nyquist band in which its cor-
responding f; is located. This chain of dependencies suggests that the RSS plot
contains the information necessary to determine the contribution of each band to
the signal at a given frequency in the Nyquist band. The inverse problem is greatly
complicated by the interaction of the Fourier components and the nonlinear “pro-

"Note that the condition that the original signal must have harmonically related com-
ponents (i.e. commensurate components) will be satisfied by any signal with a nonzero
continuous part to its spectrum as well as by periodic signals.
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Figure 3.10: Example RSS Plot: A signal f(t) = S°.°, ¢;sin(2mit) with the ¢;’s

chosen randomly in [.75,1.25], was sampled every .0625 % exp(1) time units (=
.1698... time units). Since the Nyquist A7 is is .05 time units, the signal is
undersampled and the as the plot shows, the sample statistics change with the
reconstruction shift.

jection” that turns the waveform into statistics. This nonlinear inverse problem
will be a major focus of future work on the detection (and possibly correction) of
aliasing.

3.5 Directions for Further Investigations

In addition to the work already alluded to on the inverse problem formed by the
RSS plots, there are other issues to explore. Included among them are:

e What are the effects of noise on this method for detection of aliasing?
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Figure 3.11: Another Example RSS Plot: A signal f(t) = ;2 c;sin(2mit) with
the ¢;’s chosen randomly in [.75, 1.25], was sampled every .0125 x exp(1) time units
(= .03398... time units). Since the Nyquist A7 is is .05 time units, the signal is
properly sampled and as the plot shows, the sample statistics do not change with
the reconstruction shift.

e What is the effect of near commensurability of sample interval and signal
period?

e What is the effect of finite time-series length?

e How does the departure of the statistics of the reconstructed signal from
stationarity depend on the fraction of the total power that lies outside the
Nyquist band?

These questions are important to the practical usefulness of the method of
high-frequency detection/recovery.
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3.6 Conclusion

Although the idea of detection of aliasing is typically dismissed with references to
the Nyquist criterion and the Shannon reconstruction theorem, we have demon-
strated that detection of aliasing is possible with what appear, at first glance, to
be very weak prior assumptions. The key concept is that of sampling stationarity.
We emphasize that this concept makes sense for single waveforms. Although this
concept arose in the consideration of step signals like square waves, its usefulness
extends far beyond these signals. In particular, our method enables the detection of
aliasing in samples from nontrivial waveforms such as measurements from motion
on the Lorenz or Rossler attractors. As indicated above, many questions remain.
Some of these are important for the practical utility of the concept of sampling
stationarity and the associated RSS plots.

3.7 After-notes: Computational Details

The calculations represented in the paper were done with Matlab. The Lorenz
equations,

& =0(y — )
y=x(R—2)—y (3.10)
z =xy — bz,

were integrated with parameter values of o = 10, R = 28, and b = 8/3 using
Matlab’s “ODE45” which is an adaptive step size routine. Relative tolerance was
set to the default value of 1.0 x 10~% and absolute tolerance was set to the default
1.0 x 10°°. Initial conditions were set at = y = z = 1. Values for the z, y, and 2
coordinates were saved every 0.5 time units. 200,001 samples were taken and split
into two interleaving time series each 100,000 samples long. The first series was
used to reconstruct a signal via convolution with a sinc filter of length 200,001.
These very long series and filters were used to minimize the effects of truncating
the convolution at the ends of the series. The histograms for the reconstructed
signal were computed from the middle 50% of the reconstructed series.
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The Rossler equations,

T=—2z-y
Y=+ ay (3.11)
Z2=b+z(z —c),

were integrated in the same way with a sampling interval of 10 time units, and
parameter values of ¢ = 0.15, b = 0.2, and ¢ = 10. In this way 200,001 samples
were obtained and the splitting and reconstruction were done as described for the
Lorenz equations.

All the histograms presented here were originally calculated from much shorter
time series (10,000 samples). The features that allow us to conclude that aliased
components are present were all clearly visible in the histograms made from shorter
time series although, of course, the histograms were considerably rougher. We
conclude that the results that we have presented are certainly not an artifact of
finite-length time series.

3.8 After-notes: Sample Statistics for a Periodic
Signal

If one samples a periodic signal, h(t), incommensurately with the signal period

T, the samples end up mixing evenly around the waveform?®

. The resulting his-
togram is proportional to the reciprocal of the derivative of the waveform. This
follows from the fact that the probability of getting any particular ¢ (position along
the waveform) is uniformly distributed over [0,7") which in turn implies that the
probability of the interval [y, y + dy) is the probability of the corresponding dt or

(1/T)(dy/h (t)). More precisely, the probability density for y is

py) == D (W)™ (3.12)

ta ET(y)

8Proving this is surprisingly difficult. An equivalent problem is the determination of
the density of points obtained by repeated iterations of an irrational rotation on a circle
of unit circumference. The resulting distribution of points satisfies ny, ;) /N ~ (b — a)
where n[,p) is the number of iterates in [a,b), N is the total number of iterates, and
[a,b) C [0,1). See [89, p.39-40,29] for details.
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where
T(y)={t[t€[0,T),h(t) =y} (3.13)

Note that the density will have 1/4/(y) singularities at the local maxima and
minima of A(t). The form of the singularities follows from the fact that a generic
waveform has maxima and minima with nonzero second derivative.
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Chapter 4

Reconstruction from projections
using dynamics: Noiseless Case

Kevin R. Vixie !

4.1 Introduction

Reconstructing a series of 3 dimensional density distributions from a finite number
of 2 dimensional measurements is impossible unless prior assumptions of some
sort are used [90]. The difficulty comes from the fact that, without fairly strict
assumptions, many different density fields project to the same radiograph. To state
this another way, a radiographic measurement device, thought of as a projection
operator, has a nontrivial null space. Our approach in this paper is to discretize
the object space and the radiograph (measurement) space. We then combine a
sequence of radiographic measurements into one super-measurement. Combined
with the operator which determines dynamics, the single time projection operator
can be turned into an extended projection operator that maps a sequence of objects
into a super-measurement. Due to the dynamical constraints, the dimension of the
object sequence space does not grow as the length of that sequence increases. On
the other hand, the size of the data space (the space of super-measurements) does,
implying that eventually, the extended projection operator has a trivial null space.

Now a look ahead. In section 4.2, we briefly outline the problem. Section 4.3
outlines the notation used for the rest of the paper. In section 4.4 we introduce

IThe research for this chapter was done in collaboration with Gary Sandine.
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the problem in it’s linear setting and give a technical overview of our results. The
key notion turns out to be that of transversality. An intuitive footing for the
entire paper is given. In the following section (sec.4.5), we illustrate the ideas with
simple numerical examples. Section 4.6 contains the technical results of the paper.
In subsection 4.6.1, we introduce and prove a theorem which bounds how slowly
the dimension of the projection operator null space decreases as the number of
measurements incorporated in the super-measurement goes up. There is a lower
bound on the number of measurements that are needed to get a unique inversion.
If n/d = (dimension of the object space) + (dimension of the measurement space),
then the lower bound is simply [n/d] — the smallest integer greater or equal to n/d.
We will say that a particular combination of linear system, L and measurement
projection, P has the optimal reduction property if the number of measurements
needed to get an unique inversion equals this lower bound. Subsection 4.6.2 looks
at the prevalence of linear systems which (w.r.t. a fixed P) having the optimal
reduction property. Next, in subsection 4.6.3, we outline a proof of the extension
of one of the results to the case of nonlinear dynamics. The relation to known
results is discussed in section 4.7. We close with a summary and discussion.
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4.2 The Problem

Radiographic experiments measuring very fast events typically produce data con-
sisting of a sequence of 2-d projections. These 2-d projections are created by
bombarding some 3-d distribution of density — the object — with penetrating radi-
ation of some sort such as high-energy x-rays or protons. The number of angles at
which the data is taken is typically 1. We idealize this to get the following model.
The object will be a point x in an object space X which changes from measurement
to measurement as dictated by a linear operator L, acting on X. The measure-
ments d which lie in the measurement space D will be generated by the action of
a measurement or projection operator P. Thus, if the object and measurement at
time ¢t € N are denoted z; and d; respectively, we can express the actions of the
operators L and P in the following way: 2,41 = L(z;) and d; = P(x;). See figure
4.1. We define the extended (or experimental) spaces to be the product spaces

L L L L L L
aRdh

reeee ¢
AA“A Yy

Figure 4.1: The Problem

X = X7 and D = DT where T is the number of observation times in a particular
experiment. If we have a particular sequence of points in the object space, then
this sequence is a single point & = (x1,x9, ..., zr) in X. The measurement pro-
cess produces a point d = (dy, ds, ..., dr) in the extended (or super-)measurement
space D. This can be succinctly expressed using the extended projection operator
P = P7 since then d;, = P(%,).
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If A is defined to be the T-1 by T block matrix,

[ L —-T 0 0
0 L —I 0
0 0 L —I

| 0 0 0 L

-1

(4.1)

then the null space of this operator, denoted Ny, is exactly the set of elements
of X which satisfy the dynamics. That is, Na = {Z € X|zyy1 = Lz, where & =

(21, T, ..., xr)} = the set of sequences in X which satisfy z,,1 = La,.

Let Nz be denote the null space of P. The inverse problem is now solvable

when Ny N Np = {0}.

4.3 A Pause for Notation

We now establish the notation we will use throughout, except in section 4.6.3
where we find it more convenient to modify the notation. This section should be

used as a reference.

T = The number of radiographs.

X = The Space of objects - we will use R".

x = An element of X.

B = A basis for X. It has precisely n elements.

b; = the ith element of B.

X=XT=XxXx..xX.

i = An element (21, ..., z7) of X.

B = A basis of X given by b; fori =1,...,n.

D = The space of radiographs - we will use R™.

b; = A basis element of X given by (b;, L(b;), ..., LT"1(b;)). (L assumed invertible.)
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d = An element of D.

]
Il

DT =DxDx..xD.

IS
1l

An element (dy, ..., d7) of D.
= The linear operator on X that gives the dynamics: z;41 = L(z;).

L

P = The projection (measurement) operator P : X — D. We assume that P is
full rank since otherwise we may choose a smaller D and consider P with
this restricted range to get a full rank P.

N = The null space of P.

p = The dimension of the null space of P.

P = The extended or product projection operator P : X — D.
[P 0 0 0 0]
0O P 0 0 .. O
P=|(0 0P 0 .. O (4.2)
| 0 0 0 0 P |
A = An operator from X to X7-1
[ L -T 0 0 0]
0O L —-I 0 0
o 0 L -1 . 0 (4.3)
| 0 0 0 L —I |

N4 = null space of A = set of Z such that x;,1 = L(z;) fori=1,...,7 — 1.
pNA = P(NA)

[A,...,C] = The Cartesian product A x ... x C.
And we use the following standard notation.

dim(H) = The dimension of the space or subspace H
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M~ = The orthogonal complement of M.
And the almost standard notation ...
S M @Q = S intersects () transversely,

with the slight twist that when S and () are subspaces, the intersection always
includes the zero vector. So for example, a transverse intersection of two 1-
dimensional subspaces of R® is just {0}, instead of empty intersection as would
be the case for two 1-dimensional curves in R3.

4.4 The Solution: An Overview

Let X = R". Pick a basis, {b;}, i = 1...n, for X. Then N, is spanned by b € X
where bz = (bZ,L(bZ), ceey LT_l(bi)).

Example 4.4.1. Suppose that the linear operator L has a complete set of eigen-

vectors {w;}, where i goes from 1 to n. Then Ny is spanned by &; € X where
(Z)i = (wi, L(wi), . LT_I(LL)Z')) = (wi, /\iwi, . )\;rilwi).

Let D = R™. Form Epg), the n by mT matrix where row i is P(b) =
(P(b;), PL(b;), ..., PLT~1(b;)). Then there is a unique # for every P(Z) iff the
rank of £ B is n. (This is virtually identical to the usual test for observability
from control theory, except that I am not assuming that 7" = n. See for example
[68] p. 178 or [91] p. 271). We would like to know how big T needs to be: how
many measurements do we need? Before diving into the theorems and their proofs
answering this question, we pause to give an intuitive overview of the ideas behind
the theorems as well as a peek at the results themselves. We also insert a section
containing a simple numerical example just before the section with all the main
results.

Let us look at N4 N Np a little more carefully. If the “true” sequence in X
is 7* and we have measured d* = P(Z*), then any n* = (ny,ny,..,np) € NT
can be added to #* without changing the observed data P(i*). In other words,
every point in [z + N, z5 + N, ..., z% + N] generates identical measurements — for
every n* = (ny,ny,...,ny) € NT, d* = P(i* + n*). Since we are only interested in
dynamically possible sequences, we may look at the smaller set of n* which are in
fact null orbits. We can see this as follows:
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e Notice that if the state at time 1 was a member of the set 7 + NV, then the
state at time 2 is not only a member of 3 + N, but is in fact in L(z} + N).

e Therefore, the state at time 2 is in L(z} + N) Nz + N.

e Likewise, the state at time 3 is in L(L(z} + N) Nzj+ N) Nxi + N.

We may continue in this fashion, but instead let us simplify things by using the
linearity of L.

o L(z{+N)=L(2})+ L(N) = x5+ L(N)

e Therefore, L(zi + N)Nay+ N =z + L(N)N N.

L(L(z3 + N)Nay+ N) = L(z5+ L(N) N N).

Therefore, L(L(z}+ N)Nz5+ N)Nai+ N =z5+ L(L(N)NN)NN.

And soon ...

Continuing this, we get

n* = (ny, 0y, ...,n7) € [N, NN L(N), N 0 L(N 0 L(N)), ... (4.4)
and defining
N1 =N
N2 =NN L(Nl)

NT =NnN L(NT_l).
we arrive at the requirement that null orbits n* (which may be added to the “real”
orbit without changing the measurements) satisfy,
nt = (nl,nQ,...,nT) S [Nl,Nz,...,NT]. (46)
Now assume that L is invertible. If Ny = {0}, it follows that Ez; has rank =n
and Ny N Np = {0}.

The obvious question then is, “What is the smallest 7" for which Ny = {0}?”
The approach we will take to answer this is to notice that the dimension of NV; steps
down at a maximal rate when the intersections defining the N; are all transverse.



52 Chapter 4. Reconstruction from projections using dynamics: Noiseless Case

We go into this in much more detail in section 4.6, but the intuitive idea is that
two subspaces will typically intersect so as to have an intersection of minimal
dimension — we expect that the sequence of intersections will in fact step down
in dimension as fast as possible. How fast is this? If W; and W, are a pair of
randomly chosen subspaces of R* having dimension (or degrees of freedom) &; and
ko respectively, then we would expect together, they would have &k, + ko degrees of
freedom. But of course this number can not exceed n. So the degrees of freedom
in Wy not contained in W7 would (typically) be exactly n — k;. The intersection
Wi N Wy contains the degrees of freedom of W5 which are contained in Wi. So
dim(Wy N W5) + n — ky = ko. This leads us to:

Statement 4.4.1. A typical intersection of subspaces Wi and Wy with ki =
dim(W1) and ke = dim(W5s), has the property that

d1m(W1 N WQ) = kQ + kQ —nNn (47)

This leads simply to the fact that if the dimension of the null space is n — d
and somehow L is “typical” then dim(L(N)NN) = (n—d)+ (n—d) —n =n—2d.
Continuing, we get that the dimension of the intersection steps down by d each
time. And of course this is what we would naively expect ... each measurement of
d quantities reduces the degrees of freedom that we do not know by d. And this
leads to the answer that T = [n/d].

We begin section 4.6 by examining exactly how a T for which Ep(,;) is full
rank, can fail to exist. Quite simply, we can fail to have unique solutions when L
preserves some subspace of N. This is also not surprising since in this case we have
an entire subspace of X, each point of which is in fact a null orbit of L. We then
show that typical dynamics L give us exactly the optimal 7. Finally, we carefully
conjecture a path to a similar result for the case in which neither P nor L are
linear.

Statement 4.4.2 (Technical Overview Summary). The problem of determin-
ing the object sequence from the sequence of measurements reduces — in the linear
case — to the inversion of a particular matriz. In the noiseless case, existence of
solutions is not in question. Uniqueness of a solution that is guaranteed to exist is
an important question and the fact that any null sequence n* = (ny,ny, ...,ny) € N
can be added to any state sequence without changing the measurements illustrates
the problem. Since we are assuming that the state sequence satisfies the dynamics,
we find that null sequences which give non-uniqueness are in fact null orbits. Care-
ful consideration of the dynamical constraints shows in fact that these null orbits
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are elements of a particular set of intersections. Since transversality of intersec-
tions is typical (in a sense to be defined more carefully below), we expect that the
number of observations needed to get unique invertibility is in fact T = [n/d].

Remark 4.4.1. Note that n* = (ny,ng,...,np) € [N, NNL(N), NNL(NNL(N)), ...]
s actually more than the set of “null” solutions. It turns out to be small enough
to meet our needs.

Remark 4.4.2. If L is not invertible, then Ny = {0} does not imply that Ny N
Np = {0} since NANNp € {The Set (L7(...L7*(0)...)), ..., L71(0),0)NNT}. More
precisely, it can be all the orbits of points in L~Tt1(0) N N. Therefore, trivial Ny
is a necessary but insufficient condition for the invertibility of the data d* when L
s not invertible. Consider the following example.

Example 4.4.2. Suppose that X = R*® and that P : x — (x9) € R'. This implies
that the null space of P is 19 dimensional. Suppose that L is the nilpotent operator
given by the 20 x 20 matriz

0 1 0 .. 0
0 10 .. 0
00 0 1 .. 0]. (4.8)
0 0 0 0 0|

Suppose that T = 21. Since LT=! = 0, we have that Ny = {0}. Now since
L™TH0) N N = N maps into L~"2(0) NN = L=72(0) and L~"*2(0) maps into
L7TH0) N N = L7T3(0) and so on, we have that the orbits of every point in
LT (0) NN = N is an element of Na N Np = {0}. Therefore even though
Np = Ny = {0} we still have a 19 dimensional Ny N Np = {0}/

Remark 4.4.3. If the dynamics and projection are not linear, the ideas remain
the same. First, let us look at the linear case a little differently. Notice that the
z; + N are actually the level sets of P at d;. These level sets are in fact simply
translates of each other. Linearity implies that L(z; + N) = L(z;) + L(N) and this
permits us to look exclusively at iterates of the N. Mowving to the nonlinear case,
we now have level sets of P which are not simply translates of each other and we
can no longer use linearity to decompose the operation of the dynamical operator
which we will denote F. If we define the level sets Ng, = P~'(d;), the intersections
of interest are F'(Ng,) N Ng,, F(F(Ng,) N Ng,) N Ngg, and so on. We look at this
i much greater detail in section 4.6.3.



54 Chapter 4. Reconstruction from projections using dynamics: Noiseless Case

4.5 The Solution: Numerical Examples

We now give two examples in which we apply the technique described in section
4.4 to invert simulated sequences of (noiseless) radiographs using one view. Our
purpose in this section is simply to demonstrate the procedure. We assume our
object lies within a 10 x 10 pixelation and has constant density within each pixel,
so the object space X is R, We use the same initial condition with two different
linear operators L; and L, which we describe below. In each case, the projection
P sums the values down the columns of the pixelation. We use, in a sense, the
largest parameterization of our object space; namely, we assume nothing about the
object and seek to determine the value in each pixel. At the end of this section, we
comment briefly on the poor numerical conditioning of these problems and indicate
first steps taken to improve the numerics. This is a subject of current study.

To reiterate the procedure, first choose a basis {b;}1% for X. With L and
P representing the dynamics and projection operators respectively, we build a
100 x 10¢ matrix E where the ith row of E is (Pb;, PLb;, PL?b; ..., PL'"'b;) = P,b;.
As soon as t is large enough so that rank £ = 100, we have a unique solution z for
the equation zF = d*. Since we know the dynamics L, we can then reconstruct
the sequence 7* = (x, Lz, L?z, ..., L' 'x).

In each example, we chose the canonical basis {e;};% for X where e;(j) = d;;

(1 < j <100). The first linear operator L; can be described as a combination of
a diffusion and a shift. The best way to describe L; is as a two step process:

Diffuse spread the mass at any pixel to itself and the neighboring pixels: the contri-
bution to prew(i,7) from pyg(i, 7) is simply (1 — D) * pygq(i, j) and the con-
tribution to ppew(i £ 1, j £ 1) from pyqa(i, j) is simply fix1j41 * D * poia(i, J)
where Y fiz1,41 = 1.

Shift Now set ppew(?,7) = Prew(i + 1,75 — 1).

where we have ignored the diddling we must do at the boundaries and we are using
Potd() and prew() to denote pixel values. The effect of L; is pictured below for
various times ?.

Here, the rank of E increased by 10 each time step, so we achieved rank £ = 100
in the minimal number of steps and were able to solve for the initial condition z.
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® o @~ N
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2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

(a) = (b) L2z (c) L3z (d) Lz

Figure 4.2: Initial condition and Li{z for t = 2,5, 9.

Our second operator, Lo, was a diffusion operator where the diffusion coefficient
varied over the pixelation. We explain it in relation to the description of L; above.
D (in item [Diffuse] above) is a function of the i, j-pixel, and for the i, j-pixel is
chosen to be £(:352107°)/* (so the rate of diffusion was greatest in the lower right
corner of the pixelation and was least in the upper left corner). The [Shift] part is
skipped, but we must again fiddle with things at the boundary. The effect of L, is
pictured below for a few times t.

2 2 2
4 4 4
6 6 6
8 8 8
10 10 10
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
(a) = (b) L3z (c) L3z (d) Loz

Figure 4.3: Initial condition and Lz for t = 2,5, 9.

In this example, the rank of E again increased by 10 each step reaching 100 after 10
steps. Pictured below are the initial condition x and the reconstructions obtained
by using the data sequence (Px*, PLyz*, PLix*, ..., PLiz*) for t = 9,14,

With regard to the numerical conditioning of these problems, we note that the
condition numbers of the matrices F constructed using L; and Lo were on the order
of 10'? and 10'! respectively. By running the dynamics longer than the number
of time steps required to achieve full rank, we were able to reduce the condition
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2 2 2
4 4 4
6 6 6
8 8 8
10 10 10
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
(a) z* (b) z,t =9 (¢) z,t =
14

Figure 4.4: Initial condition and reconstructions using L, for ¢t = 9, 14.

number in both cases. Namely, using L; for 15 time steps reduced the condition
number of E to 10''. But with Ly, using 12 time steps reduced the condition
number of E to 10°, and at 15 time steps the condition number reduced to 10%. In
both cases, extending beyond 15 steps gave no significant improvement.

Remark 4.5.1. These relatively ugly condition numbers mean for all practical
purposes, we have a null space to worry about. More specifically, the presence of
even small amounts of noise will make conclusions about components of the object
associated with the small singular values, meaningless.

4.6 The Solution: Nitty-Gritty Details

The three subsections of this section contain technical details of the paper which
we have described intuitively in section 4.4. Having read section 4.4, one could
simply read the theorems and conjectures of this section and skip the proofs if so
inclined and still understand the paper. With the warning that this section is more
detailed and more demanding than the other sections of the paper, we invite the
reader to dive in.

4.6.1 Transversality is (more than) enough

We now study how the dimension of N; depends on k. What conditions imply
that eventually dim(/N;) becomes 0 for some k7 How prevalent are the L’s for a
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fixed P that have T¥ = { minimal T such that Ny_; = {0} } = [n/d]. That is,
how prevalent are the L’s having the optimal reduction property?

Let us begin by reiterating the definitions of the N.

Nl =N
N2 =NN L(Nl)

NT =NnN L(NT_l).

If G and H are linear subspaces of J then the only situation stable to small
perturbations is that the intersection of G' and H has minimal dimension. That is,
we expect dim(G N H) = dim(G) + dim(H) — dim(J) where a non-positive result
indicate the trivial intersection of dimension zero. If this is the case we shall say
that G and H are transverse and will write thisas G M H.

Referring to the above definitions of the N;’s we see that these sets decrease in
size at the maximum allowable rate if the intersections defining them are transverse.
For example, if as above, dim(X) = n and dim(/N) = p, transverse intersections
imply that the sequence of dimensionsisp ,p+p—n,p+p+p—n—n,.. orif
we note that d = n — p then the sequenceisp ,p—d,p—2d,p—3d,... and we
get that dim(Np,/41) = 0 (Remember that we are assuming that P is full rank.)

Suppose that the intersections are not transverse. Then we still have the fol-
lowing lower bound on the rate at which the dimension of the N;’s decrease.

Theorem 4.6.1 (Minimal Reduction Theorem). If there is no nontrivial sub-
space G of N such that L(G) C G then fori < dim N+1, dim(V;) < dim(N)—i+1.

Proof. Assuming for the moment, that N; 1 C N;, we get that dim V;;; < dim V;.
Then, if dim N;;; = dim /V;, we conclude that N; = N;;;. By definition of N;,4,
we then have N; = N N L(N;) so N; C L(N;), hence dim N; < dim L(N;). Since L
is a linear operator, dim L(V;) < dim N; holds as well, so N; = L(N;). But N; is a
subspace of N, so it follows that N; = {0}. This means that dim(N;41) = dim(N;)
only if N; = {0} so that dim(N;;1) < dim(N;) — 1 if dim(V;) # 0. This implies
our monotonically decreasing upper bound for the dimensions of the NN;.

To see that N;y; C N;: we use induction. We have Ny = NNL(N) C N = Ny,
SO NQ g Nl- If Nk—l—l g Nka then Nk—}—2 =NnN L(Nk_|_1) g NN L(Nk) = Nk—|—1' Ol



58 Chapter 4.

Can one find an example of minimal reduction? Yes!

which X = R® and

Then we get that N is given by

P

S O O o= O

S =

o O O = O O

— O

where the x’s can be any value. This gives

=
|

8 8 8 8 O

4.6.2 Optimal Dynamics are generic
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Reconstruction from projections using dynamics: Noiseless Case

Consider the case in

O O O O O O

(4.10)

(4.11)

(4.12)

(4.13)

We now present and prove a theorem that addresses the point of how prevalent
operators having the optimal reduction property are. In fact as the title of this

section suggests, optimal L are generic. By generic we mean open and dense (as
opposed to merely residual).
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Definition 4.6.1 (). Identify the set of operators L = (L, Lo, ..., Ly_1) with
RT=1n" . Now define T € RT=U"" o be all those L € RT=Y"" such that

Li(N;) M N Vi. (4.14)

Theorem 4.6.2 (Extended Linear Transverse Intersection Theorem). ¥
is open and dense in R(T—1n*

In the following proof, we will use d4 to denote dim(A). Since the set of all

(T-1)n* e shall assume that L

invertible L in ¥ is open and of full measure in R
is invertible throughout the proof. We shall also use the fact that for invertible L,

L(ANL(B)) = L(A) N L*(B).

Proof. We first observe that M; M M, < dleL(Mz) = min(dMlL,sz) or equiv-
alently that rank(P. o Py,) = min(dy,dar,). A little bit of thought is enough
to convince oneself that rank(P,; 1 o Pp,)) = rank(Py,, + o L o Py,). Therefore
we get that My M L(M;) < rank(Py, 1 o L o Py,) = min(dy, 1, day,).(Here we
have used the invertibility of L to conclude that du, = dr(as,)). Let us approach
the problem a little more generally. We shall use the fact that K M L(M) <
rank(Py1 o L o Pyy) = min(dg,dy) to show that the set T, of all L in R*" such
that K M L(M) is open and of full measure. Here K and M are linear subspaces
of R™.

Define column vectors p.; for ¢ = 1,...,dg1 that are orthogonal to each other
and span K*. Likewise let ¢.; for 1 = 1,...,dy be column vectors orthogonally
spanning M. Define the n by n matrices P and () as follows:

P11 P12 -+ Pldg. 0 ... 0

p— p2',1 Pz',2 ) pz,(?KL O . O (4.15)
Pni1 Pn2 - pn,dKJ_ 0 ... 0

and

Qi Q2 - Gudy O ... 0

Q= Q2',1 Q2‘,2 e Q2,‘dM 0 e 0 (4.16)
dn,1 4dn2 --- dndy 0 ... 0

Then

Pgi=PoPT (4.17)
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and
Py =QoQ7, (4.18)
so that we get
PyioLoPy=PoPloLoQoQ". (4.19)
Now we note that
rank(Po PTo Lo Qo Q") =rank(PT o Lo Q). (4.20)

To show that ¥, is open in R”Q, observe that

PloLoQ= et UL 0 (4.21)
S

and therefore
rank(P? o L o Q) = min(dg.,dy) < Uy is full rank. (4.22)

Note that Uy is a continuous function of U, i.e. Ug : R*" — R4kt is continuous
(actually smooth). Assume without the loss of generality, that dxi > d. Let
¢ZAK; (UL) be the dj; dimensional measure of regions in RE™ applied to the par-
allelepiped with edges equal to the columns of Uy. Then ¥, is precisely equal to
(UL)*I((qbgAK;)*l(R\ {0})). Since both U;, and QSZAK; are continuous, we have that
T, is open.

To show that R” \ ¥, has zero n’-dimensional Lebesgue measure, we first
introduce a change of coordinates. Define P to be an orthogonal matrix obtained
by filling in the zero columns of P appropriately. Obtain ) from @) analogously.
Then

P'oLoQ = PToPoPToLoQoQTo(Q (4.23)
= KT Ppof fau O (4.24)

0 0 0 0
= Ly (ul) (4.25)

= upper left (dg. x dps) block of L
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where I, is the identity matrix of dimension ¢ and we have set Ly =PToLoQ.
So

T, ={L| rank(L, (ul)) = min(dg,dy) }
(4.27)

={L| Ly (ul) is full rank.}

Since P and Q are orthogonal, we have that the n? dimensional Lebesgue measure
of
. = {L| Ly (ul) is full rank} (4.28)

and

A~

<, = {L| L(ul) is full rank} (4.29)
are equal.

We now prove that R’ \f* has measure zero. Any L can be written as the
block matrix with dimension of L,; being dx1 X duy.

fJul -Eur
N - 4.30
( Lll Llr ) ( )

We can write L out in terms of elements as

5:11 1:12 ce lAm

. l l R

L= "™ ! (4.31)
an Zn2 Znn

Now assume that dg. > dyr. Identify R? ~dxt-du+(@u=1-dci +1) with the elements
of fij of an n X n matrix with the elements fu, dy » Sfay+1,d 5 - 5 Jdpr d
removed.

Next, define a mapping of ¢ : R*’ ~dxL du+(da—1)-{dgi+1) _y Rr* py

(4.32)

ij =

i i for (4,7) ¢ {i < dgs and j = dy}
3 fray fir Tor (4,7) € {i < dgr and j =duy}

which has, as its image precisely those matrices in which iul has column d;; that
is the linear combination of the first dp; — 1 columns. If we redefine our mapping to
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get a series of completely analogous mappings, each of which has a column of L
being dependent on the other columns of I:ul, then we end up with d,; such maps.
Since each of these maps are smooth, and singular (the rank of the derivative is
not equal to the dimension of the image space) Sard’s theorem [65] tells us that
the n?-dimensional measure of the image of each map is zero. Therefore the union
of the images also has measure zero. But this union is exactly R’ \f* Since the
case of dg1 < djs is completely analogous, we have now shown that ¥, is open
and of full measure in R,

To complete the proof we let the operator change at each step so that xy =
Ly(z1) , 23 = Ly(x3) , and so on. Now we have an extended operator L =
(L1, Lo, ..., Ly_y) € (R**)T~1. We will show that the set & = {L| N L;(N;) for i =
1,2,...,T —1} is open and dense in (R*)T~!.

Define C; to be the open subset of full measure in R* whose members, L,
satisfy N M L;(/NV;). Choose a countable subset, D;, which is dense in C;. Now for
each element D¥ of Dy, define C% to be the open full measure subset of R™ such that
L € C% implies that N M L(NND%(Ny)), or equivalently, N M (L(N)NL-D¥(Ny)).
Define C, = ), Ck. Since C, is dense in R"” we can pick a countable D, C G,
that is also dense in R*. We have that Ly € D; and Ly, € Dy implies that
N M Ly(Ny) and N M Lyo(N N Ly(Ny)). Continuing this process we obtain D; for
i=1,2,..,T —1 such that (L, Ly, ..., L7 1) € Dy x Dy X ... x Dp_; implies that
all the intersections are transverse, i.e. that N M L;(V;) fori=1,2,....,T —1. We
have therefore found a subset of & which is dense in (R* )71,

Now we show that & is open. (In what follows, we assume that T'(n—dy) < n.
One should replace equations 4.37 to 4.39 by their equivalents with the subscripts
and superscripts switched for each equation for which j(n — dy) > n. One then
considers the n dimensional volume of the column space in j(n — dy) space.)
The requirement that each of the intersections are transverse is equivalent to the
requirement that

dlm(Nﬂ Ll(N)) = dN + dN —n
dim(N N Ls(N) N L3Ly(N) N LyLyLi(N)) = 4dy — 3n

dlm(N N LT_l(N) N LT_lLT_Q(N) Nn...N LT_l...Ll'(N)) = TdN '— (T — 1)7’1,
(4.33)
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which in turn is equivalent to a requirement involving orthogonal complements,
specifically that

(4.34)

3(n—dy) [ rNtolLy! (4.35)

rN+
rN+o L7l
T(n—dy) ) (4.36)
rN+toLi'o..oL', 0oL,
all have full rank where 7Nt is the matrix with rows equal to independent n-
dimensional vectors spanning the linear subspace N*. This last set of expressions
follows from the fact that if M and K are linear subspaces of R* then (M N K)+ =
span(M*, K1) so that the matrices immediately above have rank 2(n — dy), 3(n —
dy), ..., T(n — dy) iff the previous intersections have dimensions 2dy — n,3dy —
2n,...,Tdy — (T — 1)n respectively. But this last expression can be seen to be
exactly those matrices which satisfy the equations

Po(n—dy)(rows from first matrix) # 0 (4.37)
P3(n—dy)(rows from second matrix) # 0 (4.38)
DT (n—dy) (Tows from T - 1st matrix) # 0 (4.39)

where ¢§-(vectors) measures the j-dimensional volume of the the parallelepiped
spanned by the vectors in R'. But since the inverse operation is continuous on the
set of invertible matrices and these volume functions are smooth, we have that the
set of (L1, Lo, ..., Ly_1) having the full rank property is open. Thus, & is open in
(Rn2 )T—l. ]

In the next section we conjecture an approach to the nonlinear case which
uses the above derivation, but before we do this we show that the linear case can
actually be made significantly simpler.
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Theorem 4.6.3 (Linear Transverse Intersection Theorem). If the set of
operators L is identified with R" and we define T C R to be all those £ € RV
such that

L(N;) M N Vi. (4.40)

Then X is open and dense in R™.

Proof. As was seen in the proof of the previous theorem, the transversality re-
quirement and the fact that we are considering the case of L; = L for all 7, reduces
to

[ 1
otm—dy)| N

| rNtoL ! | (441)

rN=+
3(n—dy) | rNto L (4.42)
| TNt o L2 |

rN+t
rN+toL!

rN+to [ -(T-1)

all having full rank. But this is equivalent to another full rank condition as follows.
Let ¢cN*+ be the transpose of rN+. In other words, while 7N+ are the orthogonal
row vectors that span compliment of the null space, cN* are the column vectors
that span the “same” space. This condition is equivalent to the following. For a
dense and open set of L:

dim(Sy = span(cN*,LocN*, ..., LF" o ecN*')) = min(k - d.y1, n) (4.44)

That is, for an open and dense set of L the sequence of subspaces Sy generated by
the iterates L/ o cN+ j = 1,2,...,k — 1, are of maximal dimension.

This fact is well known. For lack of a reference I give a proof here. Without
loss of generality let cN* be the k left most columns of the n X n identity matrix.
Then the dimension of Sy is the rank of the matrix formed by taking the k left
columns of I, followed by the k left columns of L, followed by the k left columns of
L?, and so on.
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Pick the upper left matrix minor and compute it’s determinate this will give
a polynomial in lq1, l12, l31, ...l,, Which we want to show is nonzero except on an
open and dense set. As long as the polynomial is nonzero at one point then we are
done since this implies that the set of zeros occupies a submanifold of R™ that is
at most, n? — 1 dimensional. (So we even have more! The set of “good” L has full
measure and is open.)

To show that the determinant of the upper left matrix minor is nonzero at a
point, we consider L = permutation matrix that shifts everything to the left k
clicks. This gives us the identity matrix in the upper left matrix minor and so the
determinant in question evaluates to 1. O

Remark 4.6.1. As the above proof shows, ¥ is in fact open and full measure. This
improves the result from one stated which implies stable approrimation by L having
the optimal reduction property, to one that implies this AND the improbability of

non-optimal reduction. Further improvements would involve the characterization
of Te =S N{L € R”|cond(L) < 1/e}.

Remark 4.6.2. The above proof also works with slight modifications to prove theo-
rem 4.6.2, but the proof we give leads to a conjectured proof for the case of nonlinear
dynamics, and so seems more useful even if it is more cumbersome.

4.6.3 Extension to the Nonlinear Case

The above theorem is extendible to the nonlinear case as follows. Actually, we
are conjecturing such an extension in what follows. It should be noted that the
nonlinear “extension” does not imply the linear theorem.

In this section the state space (object space) will be M, a compact manifold
of dimension m. The projection operator will be a smooth function P : M — R?
and the dynamics will be given by F;’s which map M to itself diffeomorphically.
Instead of using linearity to get a fixed null space, we find the “null” space we are
now interested in is a level set of P. These sets can change in nontrivial ways as
the point in the range of P changes. We now want to know about intersections of
these “null” sets with images of other of the “null” sets under F'

The transversality theorem found on page 74 of [40] implies that the set ¥ of
f € C"(M) which map a submanifold K of M back into M to intersect another
submanifold N transversely, is open and dense. (For compact M the topology is
nice, see [40] for details.) What we need is a bit more complicated.
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Let § be the quasi-stratification of M into the level-sets §,, © € R? of P.
Let N be the union of a finite number of (not-necessarily injectively) immersed
submanifolds of dimension < n whose self-intersections are transverse in the sense
that the tangent spaces of the “participants” in the intersection span the largest
possible subspace of T;, M where i, is a point of self-intersection.

Conjecture 4.6.1. For an open and dense set of F € D®(M)
dim(I,) < maz(n — d,0) Vz € R (4.45)
where I, = (F(N)N§,) and,

I, is a finite union of stably immersed submanifolds (4.46)

This permits us to conclude that, for any initial point zo € X and dense
F = (Fy, ..., Fr_), the intersection obtained by 7' = [m/d] measurements will have
dwindled to a finite set of points, call it S. The next measurement (" = [m/d]|+1)
will generically have precisely one point in the intersection of the set S and the
level set corresponding to the next measurement. (We use the same argument as
we used in the linear case to get a product of dense sets D1 X ... X Dp_1.)

Now, if indeed the [m/d]|+1“th” intersection is a single point, then the mapping
G:z2¢€ M — (Pzx,PFiz, PFyFix,...,PFr 1..Fix) has only one point in the
inverse image of G(zy). Since the point we have “found” (the conjecture above)
comes from stable intersections this should guarantee that the point G(z) in fact
has a neighborhood in which G is invertible. This should in turn guarantee that
there is an open neighborhood B, of G in C*°(M) such that H € B, implies
H* (H(x)) is a single point. We then use the fact that a small neighborhood of F
maps into this small neighborhood under the mapping J— (P,PJy,...,PJr_41...J7)
for J € D>*(M).

We have arrived at our second conjecture.

Conjecture 4.6.2. If M is a compact smooth manifold of dimension m, P is a
smooth function mapping M to R?, xq is a particular point in M, T = [m/d] + 1,
D = (D))" is the T — 1-fold product of the space of smooth diffeomorphisms from
M to M (D*®(M)) and we define Hy = (P, Péy,..., Pép_1...01) : M — R | where
§=(01,...,07_1) €D, then the set O of § € D such that

H;~ (Hs(x0)) = {0} (4.47)

15 open and dense in 3.
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4.7 Relation to Known Results

The results obtained above are known as observability results in control theory and
phase space reconstructions (delay coordinate embeddings) in dynamical systems.
Our results are different in that we consider variations of the dynamics with the
observation function kept fixed whereas other results either assume that the dy-
namics are fixed and the observation function changes or that both the dynamics
and the observation function is variable, see [96, 81, 1, 5, 92]. While Aeyels [1]
does consider the case where the observation function is fixed and the dynamics
are variable he does so for vector fields (not maps). He is also looking at the case
where he wants all initial points to be recoverable from the sequence of measure-
ments and this requires 2n+1 , 1-dim measurements to recover the n-dim initial
points. Similar comments apply to the comparison to Stark’s more recent paper
[92]. Our minimal reduction theorem is a more precise version of the well known
theorem in control theory that states that if the observability matrix is not full
rank then no number of measurements can give you full information on the state
of the system and if it is full rank then you need at most n measurements (of any
dimension) of a system that has an n-dimensional state space. In the preparation
of this paper we became aware of theorem 5.3.13 in [68] which, together with the
usual observability theorem, is equivalent to our minimal reduction theorem.

4.8 Summary and Discussion

In this paper we examined the use of dynamics in the inversion of projection
data obtained at a sequence of times. The main results confirm that for any fixed
measurement, projection and generic dynamics, we can simply combine the number
of measurements into one large super-measurement which we invert to obtain the
state we are trying to reconstruct. A following paper will deal with some aspects
of the stochastic or noisy case of reconstruction from projections using dynamics.

What we have established is only a first step in the direction leading to the
fruitful combination of dynamics and measured data. Many variants of the pro-
posed underlying tomography problem lead to the abstract problems identical or
similar to the one we have begun to examine. For example, one might know the
dynamics up to some set of parameters which we try to obtain — together with the
state vector — from the measurements. It seems to us that there are at least two
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important directions to go next. One is the examination of the present formulation

in the presence of noise. This will bring us much closer to “real” situations in that

the ubiquity of noise makes certain problems which are well posed in the noise-

less case, ill-posed in the presence of noise. The second direction is the attack of

a very carefully chosen concrete problem involving dynamics that we understand

analytically or at least numerically. This will invariably involve certain toy-like
characteristics which should nevertheless be useful for the approach to the large,
more realistic problems.

Natural questions that arise include:

1)

2)

3)

How is the problem of reconstruction from a sequence of projections related
to the reconstruction of a 3-dim object from a spatial sequence of slices? This
arises when one wants to interpolate a set of CAT scans to generate a 3-dim
density image. A related problem arises when one is trying to compress a
video movie by using some clever interpolation in the uncompress process.

Can we construct an efficient algorithm for reconstruction in the case of non-
linear projections and/or dynamics? Actually, even the “noiseless” linear
case, while conceptually simple, is not trivial in the high dimensional case,
where by “noiseless” we imply the lack of measurement noise (but include the
presence of “noise” induced by computation and approximation). Extraordi-
narily large condition numbers are pervasive and so any error , like roundoff,
soon overwhelms you. Future papers will begin to address issues such as
these which are involved in the dynamically constrained reconstruction of
objects from noisy projections.

If one has a set of measurements, how does one use

A) knowledge of the underlying dynamics (possibly incomplete) and

B) freedom to choose the object (state space) parameterization

in such a way as to get a well posed inverse problem that wastes as little
of the prior and measured information as possible? That is, how does one
use all the prior and measured information in the generation of the final
reconstruction? Even if we are using all the information, there are different
ways of distributing remaining uncertainty about the reconstructed object.
What freedom do we have to move these inevitable uncertainties around to
different parts of the object?
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4)

5)

In the high dimensional case, the above questions are incredibly difficult to
answer. Can we find approximate answers? Can we determine how good
these approximate answers are? For example, can we obtain bounds on
the amount of information that our parameterization/reconstruction/use-of-
-priors wastes? It seems likely that ideas from the fields of function approx-
imation/data modeling and machine learning will be useful here. Tradeoft’s
between model bias versus model variance is an example of one issue that is
pertinent here and is also a topic in machine learning.

Suppose we do the whole analysis with e fattened null spaces. (L.E. instead
of looking at the dimension of the intersections of N and the Li(N)’s, we
consider the volume and shape of the corresponding intersections defined us-
ing the e-neighborhood of N.) In this case, what sort of shape and volume
do we get for the final intersection (which before, was a single point)? This
is along the same lines as remark 4.6.1 and closely related to the idea behind
Kalman filtering. (In fact with the correct viewpoint, this “is” Kalman fil-
tering, even though Kalman filtering usually assumes Gaussian statistics and
not the uniform distributions suggested here.)
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Chapter 5

Models of Dynamics and the
Entropy Gap

Kevin R. Vixie !

5.1 Entropy and Models of Data Streams: An
Introduction

Jorma Rissanen [71] said that the three main tasks of signal processing are, pre-
diction, compression, and estimation and that the greatest of these is estimation.
For a process Y that produces strings {y}7 = (y1,%s,...,yr), suppose that one
obtains by some estimation procedure a model, §. By model?> we mean a family of
functions that map strings, {y}7, to probabilities, 8 ({y}])

With such a model, optimal performance at the other tasks is straight forward
in principle. For a given estimation procedure that adjusts the parameters 6 of a
model to fit measured data, we sometimes want to know how well the procedure
works on data generated by a process not in the model class at all. In this paper
we take up the task of measuring model fidelity.

!The research for this chapter was done in collaboration with Andrew M. Fraser.

2We will be a bit careless with our use of . In addition to referring to the entire
model generated from measurements, it will sometimes refer to the model probability
function, sometimes to the approximate dynamics that the model implicitly defines, and
sometimes to the state space also defined implicitly by the model. The specific intentions
in any particular occurrence will be clear from the context.
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We propose a measure of model fidelity based on the notion of relative entropy.
The task of modeling some (unknown) system given measurements from that sys-
tem is in general a difficult one. Since it is much easier in practice to accurately
determine the relative entropy of a proposed model to the true process than it is
to actually fit a good model (at least in the case of chaotic dynamical systems),
we have chosen a less daunting task, but one that we feel has been neglected.

In the remainder of this section, we introduce our notation, lay out the assumed
context and the propose the measure of model fidelity which we will call the gap,
G. Sections 5.2 and 5.3 look at the relationship between Lyapunov exponents
and entropy — a relationship which we exploit in the definition of G. Section 5.4
is a closer look at the notion of Sinai-Ruelle-Bowen (SRB) measures, a concept
on which the previous two sections depend in a crucial way. We finally return
to our proposed measure in section 5.5 where we carefully study the gap’s exact
meaning, calculation, and approximation. (Approximation is of interest due to the
constraints of finite precision calculations). We close with a section of conclusions
and comments on future work.

5.1.1 Notation.

In order to maintain coherence throughout the paper, we will use the following
notation.

X will be the state space, x or x; are individual elements of X and {z}} =
(71, ...,7,) is a sequence of states: usually X = RF but sometimes X will
be a compact k-dimensional manifold.

F: X — X will be the mapping or function which governs the dynamics in the
state space.

4 will be a probability measure that is invariant under F'.

M : X — Y will be a mapping from the state space to the measurement space.
We call y = M (x) the measurement of z by M.

Y, y or y; and {y}? = (1, .-, yn) — will be the space of measurements, individual

measurements and a sequence of measurements, respectively. Y will typically
be R™, m < k.
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B and § or (3; — will be a partition of the state space X and individual elements
of B, respectively.

~ will denote the finite precision (floating point) version of a quantity, function or
set. For example, the finite precision version of F' will be F'.

6 3 will be a model that approximates aspects of F, u, and M.

In addition to the usual definition, conjecture, theorem, etc., we will also use
Statement’s when we want to give distillations of concepts, intuitive statements
of meaning or the practical uses of a concept.

Other notation will be established as needed throughout the rest of the paper.

5.1.2 Overview

In many cases our understanding of the world is derived from a series of measure-
ments. The time series that results from such a series of measurements may be
either scalar or vector. Typically, the dimension of the measurements is less than
the dimension of the underlying state space.

Formalizing this, our measurements {y}7? = (y1,v2,--,¥n), ¥i € R™, for i =
1,...,m are generated from a series of states (of the real world) zi,xs,...,x, €
RX by the action of a measurement operator M : R — R™, k > m so that
(Y1, Y2y ooy Yn) = (M(21), M(x3), ..., M(x,)). The series of states {z}} is dictated
by a function F' : z;,1 = F(z;). Data driven modeling is the attempt to get
back to F' and X from the measurements or data {y}7. The idea is schematically
illustrated in Fig. 5.1. The model, which we will call 8, can then be used to reach
a number of seemingly different goals such as prediction of the future based on
the past, compression for optimal transmission, interpolation of sparsely sampled
data and qualitative understanding of the system that generated the data. The
view we take in this paper makes all these goals look very similar. Aside from
issues relating to the finiteness of resources (which may in the end make a huge
difference!), each of the goals above is met when F' can somehow be obtained. In
this paper we concentrate on measuring model fidelity when the data used to build

3 As mentioned in the footnote to the first paragraph of this chapter, we will be a bit
sloppy with notation when it comes to probabilities. More specifically, we shall denote
the model and the probabilities dictated by the model by 6.
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Figure 5.1: The big picture: A state space, Dynamics, Measurements, and a Model.
fr is the model of F', ;-1 is the model’s attempted reconstruction of X to fx.

the model comes from a known system. Such is the case when one is concentrating
on the modeling process and is therefore attempting to eliminate as many of the
unknowns as possible from the process of model validation.

So how does one measure the fidelity of a model? Is our model successful
in capturing the data and does it have the correct implicit assumptions? Is the
model a good approximation to the underlying system? These questions are the
ones addressed in this paper.

In order to get at these questions we make some assumptions. We assume that
we have some procedure for building a model based on data and that we wish to
know how well the procedure is doing. In order to measure this performance, we
will assume a known system F' is available which can be used to generate test data
and calculate quantities such as the Lyapunov exponents directly (via the Benettin
procedure [8, 9] for example). In this way, model performance can be dissected
and studied in great detail.

Under these assumptions, we will define a relative entropy gap and propose
using it to measure model fidelity.
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5.1.3 The Gap

Definition 5.1.1 (Entropy of a partition). Given a probability measure u, the
entropy of a partition B is

H(B) = — 3 () log(u(1) (1)

beB
Definition 5.1.2 (Partition refinement). Given two partitions A and B, the
refinement AV B is defined to be the coarsest partition § such that every element
of B is contained wholly in some component of A and some component of B. This
can easily be seen to be the partition generated by the intersections of elements of

A and B.

Definition 5.1.3 (Joint entropy). Similarly, given a probability measure u, and
two partitions A and B, the joint entropy is

H(A,B)=— Y p(c)log(u(c)) (5.2)

cEAVB

By applying the set map F~! one may obtain images of a partition. We use
the notation
{B}YY =BV F'BVF?BvV...vF "B (5.3)

to indicate partition generated by all the intersections of elements of the partitions
B, F'B,..,F "B,

Definition 5.1.4 (Entropy rate). We define the entropy rate of a map F, a
probability measure p that is invariant under F, and a partition B as

W(B,F. ) = lim ~H ({5} (5:4)

Definition 5.1.5 (Kolmogorov entropy). The Kolmogorov entropy is defined
as the supremum of entropy rates over all partitions

hK(Fv :U') = Slllip h(Ba F7 ,LL) (55)

The Kolmogorov entropy is also sometimes called the KS (Kolmogorov Sinai)
entropy, the metric invariant entropy or the metric entropy. Given two probability
measures, pu and 6, we now define cross entropies. The idea is that we believe y is
true and 6 comes from an approximate model.



76 Chapter 5. Models of Dynamics and the Entropy Gap

Definition 5.1.6 (Cross entropy). Given probability measures u and 6, the cross
entropy of a partition B is

H(B,p:0) Z,u ) log(6 (5.6)

beB

Definition 5.1.7 (Cross entropy rate). Given probability measures p and 0,
the cross entropy rate of a partition B is

. —_— 3 1 F .
h(B, F,p:0) = lim ~H (1B 2 0). (5.7)

Definition 5.1.8 (Relative entropy rate). Given probability measures u and 0,
the relative entropy rate of a partition B is

di,r(p|0) = h(B, F, ju: 0) — h(B, F\ ). (5.8)
We now come to the definition of the gap, G’ that we are proposing as a measure
of model fidelity.
Definition 5.1.9. The gap (relative entropy gap), G(B, F, j1,0) is given by
G(B,F,u,0) = h(B,F,pu:0) — h(F, p) (5.9)

where hy, is the sum of the positive Lyapunov exponents of F'. When there is no
danger of confusion, we will abbreviate G(B, F, 11,0) to G.

Since hy, > hg, with equality when the invariant measure p is smooth in the
unstable directions (see section 5.2 below), we have that

h(B,F,,U,) < hK(F’iu) < hL(F’M)
= G(B, F,1,0) < h(B, F, i : 6) — h(B, F, ) = d(1]|0)
= a large positive gap implies a large relative entropy rate which in turn
means there is room for improvement of the model.
The idea of a relative entropy distance can be understood as follows.

Statement 5.1.1 (Intuitive understanding of relative entropy). There at
least a couple of ways to look at relative entropy.
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e Relative entropy can be seen as a measure of “distance” that makes sense
because of Jensen’s inequality which in turn is equivalent to the fact that
convex sets always lie to one side of supporting hyperplanes.

e Relative entropy is also the exponential penalty that one pays for using the
wrong probability distribution when building a system (code) for the purposes
of data compression.

A wvery nice reference for both of these is Cover and Thomas’ book [24].

In the next section we look at the relation of Lyapunov exponents and entropy
more closely.

5.2 The Pesin and Ruelle relations

If one examines how partitions of a state space “refine themselves” under iterates of
a diffeomorphism, it becomes natural to ask if the spreading measured by the pos-
itive Lyapunov exponents might not have a direct relationship to the Kolmogorov
entropy of the same diffeomorphism. The answer is yes; there is in fact a close
relationship. The exact nature of that relationship has been examined carefully
in the work of Ruelle, Pesin, Ledrappier and Young, and others which we review
here.

5.2.1 Preliminary definitions

Recall from section 5.1.3 that the Kolmogorov entropy of a map/invariant measure
pair {F, u} is given by
1
hi(F,p) =sup lim —H (BVF'BVF?BV...v F"B) (5.10)

B n—oo N

Statement 5.2.1 (Kolmogorov Entropy Picture). Very roughly, one may
think of the Kolmogorov entropy as the average log of the number of pieces the
partition BVFBVF 2BV...VF "B goes to under the newt iteration (mapping
by F~1) and intersection with B. If F is invertible, then H(FB) = H(F) for any
partition B so that we obtain

hi(F, i) = sup lim 1H (BVFBV...vF"'B) (5.11)

B n—oo N
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which is the Kolmogorov entropy of F~'. (This will turn out to have consequences
when we discuss Pesin’s relation.) Continuing with the invertible case, if at time
t=n we “know” F =BV FBV...VF" 1B, meaning we know which tiny piece
of this partition we are in, then at timet = n + 1 we will “know” FV FF and
the average log number of pieces one element of F splits into is H(BV FF|FF) =
H(B|FF)=H(B|FBV ...V F"B) which converges to hx(F, p) as n goes to oo.

Definition 5.2.1 (Lyapunov spectrum). Let F' be a differentiable function or
map which maps an k-dimensional manifold X to itself. Let p be an F-invariant
probability measure. Let v be any element of TX (x), the tangent space of X at x.
We define the Lyapunov spectrum of F' at x as follows: The Lyapunov spectrum is
the collection of values
.1 n

Ara(v) = Tim ~log [ DF"(u)| (5.12)
as v ranges over T X (x). Oseledec’s theorem ( [111, 51, 62]) tells us that in fact, for
u almost every x, this limit exists Vv € TX (x) and it takes on exactly k (not nec-
essarily distinct) values, \(x), ..., \p(z). Furthermore, there are k, 1-dimensional
subspaces of TX (x) Ei(x), i=1,....,k such that TX(z) = Ei(z) & ... ® Ex(z) and
Arg(v) = Ai(z) for every v € E;(z).

Statement 5.2.2 (Lyapunov Picture). One might imagine a small parallelepiped
with edges aligned with the E;(x). Now tile a small neighborhood of x with these
parallelepipeds. Let I be the set of © such that \; > 0. Then, on average, one
step in the iteration of F will cause one parallelepiped to occupy eXiet *i other par-
allelepipeds (not necessarily densely). That is, if one looks at the intersection of
the map-forward of the single parallelepiped with the tiling, there will be eXiet Ai
elements of the tiling that are intersected. Now actually, one should look at DN F
with sufficiently high N ... since any given single iteration of the mapping may
not look at all like the Lyapunov exponents say it should. But this presents no real
problem since we can look at FN for sufficiently high N and repeat the procedure.
(In that case we get that “individual” iterates of the map FN look like the Lyapunov
exponents say it should with exponents Ny, ..., NAg.)

Finally we define the concept of absolute continuity. It is actually very simple.

Definition 5.2.2. Let A and u be two measures on the space/o-algebra pair (X, X).
A is said to be absolutely continuous with respect to (a.c.w.r.t) p if

u(A) =0 = A(A) =0, (5.13)
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where A € X, the o-algebra of measurable sets for both A and p.

A practical result of absolute continuity can be stated in the following way.

Statement 5.2.3 (absolute continuity of measures). If \ is a.c.w.r.t. pu then
anything that can be measured with A can be measured with p. The precise way in
which this can be done is given by the Radon-Nickodym Theorem (see section 3.2
of [30] for example) which says that if X is a.c.w.r.t. u = there is an p-integrable
f such that A\(A) = fA fdu for every set A which \ can measure.

5.2.2 Ruelle’s Inequality

In 1978 Ruelle [76] published a paper proving the following inequality relating
Lyapunov exponents and the Kolmogorov entropy.

Theorem 5.2.1 (Ruelle, 1978). Let F be a C' (not necessarily invertible) map-
ping of a compact manifold X to itself. Let x(x) = 3, 1y>0 Ai(@) where the Ai(z)
are the Lyapunov exponents of F at x. Then for any p in the set of measures
invariant under F we have that

hK§/ Xd . (5.14)
X

Note that if p is ergodic then x(z) (which is F-invariant) is constant p a.e. and
we get that hx < x.

We will look at the reason for the inequality in more detail in the next section,
but we will try to anticipate the resolution in the following explanation.

Statement 5.2.4. Statement 5.2.1 informs us that (roughly) Kolmogorov entropy
equals the log of the number of elements that a single element of the partition
redistributes itself to (on average), and statement 5.2.2 says that the sum of the
positive Lyapunov exponents tells us the same thing, so il seems reasonable to
believe that Ruelle’s inequality is actually an equality. And in fact, Pesin showed
that under the assumption of a smooth invariant measure, we do in fact have strict
equality.

To understand how a strict inequality might arise, recall that in statement 5.2.2
the number of pieces a small parallelepiped spreads out to occupy when mapped
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forward with DF was taken to be the number of pieces that this small region mapped
forward to under F. But if the measure is not evenly distributed among those
target pieces, then this number could — according to the invariant measure — be less.
(Remember that the Lyapunov products do not know about the invariant measure!)
And since the “number of pieces” is actually the factor by which the number of
pieces B(n) increases as n increases by one, with B(n) — in the smooth measure
case — given by

B(n) = Iij>0(e™) (5.15)

we might expect something like

B(’I’L) ~ Hi|)\i>0(€ndi)\i) (516)

for 0 < d; < 1 in the case in which the dimension of the measure is less than 1 in
the direction of A;.

This loss of dimension is the reason why Ruelle’s inequality cannot, without
further assumptions, be strengthened into an equality.

5.2.3 Pesin’s Formula

In 1977 Pesin showed [67] that under certain assumptions on the invariant measure,
Ruelle’s inequality is in fact an equality. Before stating the theorem, we remind
the reader that the Riemannian measure is that measure obtained from the vol-
ume associated with the Riemannian metric and that we often abbreviate “v is
absolutely continuous with respect to u” by v << u. Also, by saying that u and
A are equivalent we mean that v << p and p << v are both true.

Theorem 5.2.2 (Pesin’s Formula). If F is a C? diffeomorphism of X, a compact
Riemannian manifold X, to itself and pu is an F invariant (probability) measure
which s equivalent to the Riemannian measure, then

hK=/ xdp. (5.17)
X

So we see that in fact if we have a measure that is not fractal (i.e. in the language
of statement 5.2.4, if we have a measure which does not “lose dimension”), we can
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strengthen Ruelle’s inequality to an equality. In the next section we find the answer
to the following question,

Question 2. What are the weakest assumptions under which Pesin’s relation holds?

We will find that one needs “good behavior” from the measure in the directions
that correspond to the positive Lyapunov exponents — a result that we hope is not
too surprising to the reader at this point.

5.3 The Definitive Clarification
by Ledrappier and Young

In this section, as indicated in the last part of the previous section, we look at the
reasons that Ruelle’s inequality cannot generally be strengthened into an equality,
as well as precisely what is needed, in the form of assumptions on the measure, to
get equality. The careful dissection and definitive settlement of these questions was
published by Ledrappier and Young in 1985 [54, 55]. A very nice exposition of those
results and in fact of many parts of the ergodic theory of differentiable dynamical
systems can be found in notes with that very title by Lai-Sang Young [111].

Standing assumptions for this section are that

e X is a smooth compact Riemannian manifold,
e Fis a C? diffeomorphism of X to itself, and

e 41 is an F invariant Borel probability measure on X.*

We now proceed to the first of two main results in the pair of 1985 papers by
Ledrappier and Young [54, 55].

“A Borel measure is a measure whose o-algebra includes all the open sets. Often it
is the smallest such o-algebra which is complete. Complete means that if y(A) = 0 and
B C A then B is also in the o-algebra and of course it’s measure is zero.
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5.3.1 The strengthening of Pesin’s formula

We begin by explaining several concepts needed to understand the first theorem of
Ledrappier and Young. We will attempt to give precise intuitions for the concepts.
For the technical details see section 1.3 of [111], section 1 of [54], and the articles
by Rohlin [72, 73].

The first concept is that of the unstable foliation of a diffeomorphism F' mapping
a compact Riemannian manifold to itself. We define the unstable foliation as the
collection of

1

W (z) = {y € X|lim sup — log(d(F~"z, F™"y)) < 0}. (5.18)
n—00

where z ranges over all of X and d(-,-) is the distance induced by the Riemannian

metric. We will call the entire collection of such subsets of X, W*. It turns out

that this defines a partition of X into immersed C? sub-manifolds.

The second concept is that of a (measurable) partition which is subordinate to
W*. Let ((z) be the element of a partition { that contains z. If ( is a measurable
partition of X, then we shall say that it is subordinate to W* if for u a.e. x, {(x)
is contained in W*(z) and ((z) contains an an open neighborhood of z in W*(x).

The third concept we need to introduce before the theorem is that of a system
of conditional measures with respect to ¢. This is a bit more tricky in detail, but
intuitively, it is quite simple. Essentially, if we have a measure y on X and a
measurable partition ¢, then the system of measures p(,) is said to be a system
of conditional measures of p with respect to ¢ if each p¢(;) is the normalized
restriction of p to {(z). The technicality comes in because it would not be unusual
for p4(¢(x)) = 0 Vz. Due to this possibility, the technically correct requirements are
that ¢ be a probability measure for all z and that for all measurable £ C X,

WE) = [ pe@)(E) dp(z).

Finally, we shall say that p has absolutely continuous conditional measures on
the unstable manifolds (W*") if for every measurable partition ¢ subordinate to W*
we have that ) << vwu(g) for a.e. x, where vyyu(y) is the Riemannian measure
on W*(z) inherited from the Riemannian measure on X by virtue of the fact that
W™ is an immersed sub-manifold of X. We shall abbreviate “absolutely continuous
conditional measure” by a.c.c.m.

Now we are ready for the theorem.
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Theorem 5.3.1 (Ledrappier-Young-1 1985). If i is an invariant measure of
F, a C? diffeomorphism of a compact Riemannian manifold X to itself, then

w has a.c.c.om.’s on W* < hg(F) = /X(x) dp. (5.19)

5.3.2 The Definitive Clarification

Now we turn to the final clarification of the relation between Lyapunov exponents
and entropy. In this result Ledrappier and Young answered the question, “What
is the precise relation between entropy and the Lyapunov spectrum for any C?
diffeomorphism mapping a compact smooth manifold to itself?”. For all the details
see the original paper by Ledrappier and Young [55].

We will first state the theorem for the case in which p is ergodic. Again we will
need to introduce a few concepts in order for the theorem to make sense.

First we need to redefine the \;(z) and the E;(z) that arose in the definition
of Lyapunov exponents above. The \;(z) will now be the distinct values that the
exponents take on so that Aj(xz) > Ay(z) > ... > A (). The E;(z) will now be
the subspaces of TF(z) associated with these redefined \;(z). Consequently, the
“new” E; are sums of the old 1-dimensional E;(z). If we let m; be the multiplicity
of \;j(x), then we have that m; = dim E;(z) and the Y m; = k, where k is the
dimension of X.

We can now define the W*-manifolds, the nested family of unstable foliations of
F'. Now since the Lyapunov exponents are constant a.e. i, we can unambiguously
define k, = max{i|\; > 0}. For i < k, we define the i”th unstable foliation as the
collection of

Wi(z) = {y € X|lim supl log(d(F~"z, F7"y)) < =\ }. (5.20)

n—oo 1

where z ranges over all of X and d(-, -) is the distance induced by the Riemannian
metric. We will call the entire collection of such subsets of X, W*. This defines a
partition of X into immersed C? sub-manifolds. These sub-manifolds are tangent
to sums of the E;; W(z) is tangent to Ei(z) @ ... ® E;(z) for i < k.

As before, p defines conditional measures on the leaves of the W*¢. We can then
compute the Hausdorff dimension of these measures. For ergodic p this dimension
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is constant across leaves so that there is one dimension for each W* and we shall
call this the dimension of y on W*.

Now we are ready for the ergodic version of the theorem.

Theorem 5.3.2 (Ledrappier-Young-2.1 1985). Let F be a C? diffeomorphism
of X which is compact and smooth and p be an ergodic F-invariant Borel probabil-
ity measure on X. Let A1, ..., A\, be the distinct Lyapunov exponents of F'. Let 6; be
the dimension of i on the W*-manifolds. Then, for 1 < i < k, there are numbers
v; with 0 < v; < dim E; such that

5= (5.21)
J<i
fori=1,.., Kk, and

hic(F) =Y Ay (5.22)

1<Kp

Just before we move on to the non-ergodic case, a definition in preparation for
that theorem.

Definition 5.3.1 (k,(z) and [;). Let F be a C* diffeomorphism of X which
1s compact and smooth and p be an F-invariant Borel probability measure on X.
Let the number of distinct, positive Lyapunov exponents at x be denoted k,(z).
Because we do not assume the (F, ) is ergodic, then k,(x) need not be constant
almost everywhere. Define I'; = {z|k,(x) > i}. In words, T; is the set of x which
have at least i distinct, positive Lyapunov exponents. (Since k,y(x) is no longer a
constant almost everywhere, the domain of the various functions must be adjusted
accordingly: we will use T'; for this purpose.)

Now the non-ergodic case. Remember that any non-ergodic invariant mea-
sure has a natural partition into ergodic components. On each of those ergodic
components, the previous theorem works so that (modulo some details!) we get

Theorem 5.3.3 (Ledrappier-Young-2.2 1985). Let F be a C? diffeomorphism
of X which is compact and smooth and p be an F-invariant Borel probability mea-
sure on X. Let A\(z),..., \pz)(x) be the distinct Lyapunov erponents of F. Let
b; : Ty = R be the dimension of pn on the W*(z)-manifolds. Then, for1 <i < k,(z)
there exist measurable functions ; : I'; = R with 0 < v;(z) < dim F;(x) such that

5= Yo%) (5.23)

J<i
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fori=1,..,ky(z) and

me®) = [ 3 N@)ula) duo) (524
)

i<kp(x

The main difference to notice is that we end up with an integral over the all the
elements of the partition (into ergodic components) which should not be surprising.

5.3.3 Why Ruelle’s Inequality is not an Equality

We now come back to the question of why Ruelle’s inequality is not an equal-
ity. Recall that Ruelle’s inequality didn’t assume invertibility, while the last three
theorems have assumed F to be a C? diffeomorphism. In exchange for the loss
of generality incurred by assuming F is a C? diffeomorphism, we were able to
state in theorems 5.3.2 and 5.3.3 precisely how equality is not attained in Ruelle’s
inequality.

Paraphrasing those results, a strict inequality occurs when the measure con-
ditioned on the unstable foliation is singular (w.r.t. the Lebesgue measure condi-
tioned on the same foliation). The rate of increase in uncertainty (i.e. the entropy
rate) should therefore be measured by the sum ) \;; instead of the strictly greater
quantity > A; dim E;, where the fact that the invariant measure is fractal in one of
the \; directions is reflected in the corresponding 7; being strictly less than dim E;.

The example shown in figure 5.2 illustrates how one can end up with a strict
inequality. We back away from our assumption of invertibility for the example.
What we see is that when the dimension of the invariant measure is fractal in the
unstable direction, we find that the entropy is reduced — and by the precise amount

( }zigg ) predicted (for diffeomorphisms) by Ledrappier and Young.

5.4 SRB measures

As we discovered in the preceding section, Pesin’s relation holds precisely when the
invariant measure under investigation is absolutely continuous with respect to the
volume measure on the unstable foliation. L.S. Young calls these measures SRB
measures, but a glance through the literature shows that SRB (also refered to as
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Uniform Measure on [0,1)

> X - -
Y =3Xmod 1 Middle Third Cantor measure on [0,1)

Figure 5.2: 3z mod 1 on the uniform density versus 3z mod 1 on the middle third
Cantor set. In both cases the Lyapunov exponent is A = log(3), but h(tcantor) =

log(2) while A(tyniform) = log(3).

SBR) measures appear to have several different meanings. This section is intended
to shed light on that situation.

5.4.1 Three definitions

In the following the dynamics are governed by ;11 = F(x;).

Definition 5.4.1. We will say that a measure p is an acSRB measure if pu s
absolutely continuous with respect to the Lebesque measure on the unstable foliation
of F.

This is what was originally called an SBR and then SRB measure by L.S. Young.

Definition 5.4.2. We will say that a measure i s an eSRB measure if, for a set
of © with positive Lebesgue measure,

lim ~ iqb(Fi(x)) — / 6 du (5.25)

where ¢ is any function in a suitable class of test functions.

This can be understood to mean that the weak limit of the measure concen-
trated on a single orbit from time 0 to n exists (n — oo) AND that limit is
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“find-able” since we get the same limit for a set of initial conditions x with pos-
itive Lebesgue measure. The key point — and the thing that the Birkhoff ergodic
theorem doesn’t give you — is that the set of initial  for which equation 5.25 holds
has non-zero Lebesgue measure.

Definition 5.4.3. We will call i the sSRB measure if we find it as the limit as
e — 0 of a stochastic system obtained by adding “noise” with small parameter e.

5.4.2 Relationships between acSRB, eSRB, and sSRB.

The first of the results concerning the relationship between the three different
definitions was contained in a paper by Sinai in 1972, in which he showed that
for Anosov systems (defined below), there was a unique acSRB measure supported
on the attractor and that this measure was also eSRB. This was followed by two
results extending Sinai’s work to the Axiom-A case (defined below). The first
was by published by Ruelle in 1976 (but submitted in 1973) and the second was
published by Bowen and Ruelle in 1975 (but submitted in 1974). Before proceeding
to the statement of the pertinent results, we review several definitions.

Definition 5.4.4 (Uniform Hyperbolicity). Suppose that A is a closed F-in-
variant subset of X and that we can find linear subspaces, Ef and E, of TF, for
every x € A such that TF, = Ef®FE,, dim Ef +dim E; = dim X, and E and E;
depend continuously on z. Suppose also that F(E}) = E;(x) and F(E,) = By
If we can also find constants C' > 0, A > 1 such that

T F~"(0)||pn@ey < CA~"|v]| ifv € B (5.26)
T F™(0)||pn@y < CA"||0]] if v € B (5.27)

for all n > 0, then we say that A is a hyperbolic or uniformly hyperbolic invariant
set.

Let us put this a bit more informally:

Statement 5.4.1 (Uniform Hyperbolicity). Uniform hyperbolicity simply means
that at each point x on the attractor we can split the tangent space T, X (what the
derivative operates on) into a sum of spaces, Ef and E,, which are F-invariant :
DF(E) = EI}L(:C) and DF(E;) = Ep - These subspaces have the special property
that on the E™, DF is expanding at a rate which is globally bounded below and on
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E~, DF 1is contracting at a rate which is globally bounded above. Since everything
1s either expanding or contracting at rates which are globally bounded away from 1,
the system is uniformly hyperbolic.

If the whole manifold X is uniformly hyperbolic then F' is called an Anosov
diffeomorphism. If the non-wandering set 5 is uniformly hyperbolic and the set
of periodic points is dense in the non-wandering set, then F' is called an Aziom-
A diffeomorphism. That Anosov = Axiom-A follows from the Anosov Closing
Lemma, see page 75 of [13].

Remark 5.4.1. There is a bit of confusion in how the term hyperbolic is used.
Sometimes a system is said to be hyperbolic if it’s Lyapunov spectrum does not
include zero. Such systems are also termed mon-uniformly hyperbolic. A strict
interpretation of even this term is misleading since non-uniformly hyperbolic is
used for systems which may or may not be hyperbolic. A better term would be not-
necessarily-hyperbolic, but non-uniform hyperbolicity has become standard. One
can also find hyperbolic being used synonymously with uniformly hyperbolic.

We are now ready to state the theorem.

Theorem 5.4.1 (Sinai-Ruelle-Bowen [88, 75, 14]). Suppose F is a C? diffeo-
morphism on an n-dimensional manifold. Suppose A is an Aziom-A attractor ©
with basin of attraction W. Then,

e There exists a unique acSRB measure with support in A.

o There is a subset W C W, such that W\W " has Lebesque measure 0 and,

1
Jim Zqﬁ (Fi(z / o(x)dp(z (5.28)

for all z in W and ¢ is any function in a suitable class of test functions. In
other words, p s an eSRB measure.

®Non-wandering set = {z € X| V nbhds B, of =z, B, N FY(B,) #
(0 infinitely often in n}.

6An Axiom-A attractor is a set A such that 1) F : A = A (i.e. A is an invariant set
under F'), 2) F' is uniformly hyperbolic on A, 3) There is a compact neighborhood of A,
U such that F(U) C U and A = N,>oF"™(U), and 4) F is topologically transitive on A.
F' is topologically transitive on W if for any two open sets A and B in W, there exists
an n such that T-"AN B # 0.

TW\W is defined to be {x € W|z ¢ W}.




5.4. SRB measures 89

The relation of acSRB and sSRB has been investigated by Kifer, Young and
Liu. The first result, published by Kifer in 1974 [52] established that stochastic
dynamical systems with parameter € derived from Axiom-A systems have stationary
measures which converge to the acSRB measure of the Axiom-A system as € goes to
0. Very roughly, one should think of an operator Of, that maps forward a measure
w in the following way.

Let p be the density of ;1 with respect to the Lebesgue measure. Define ¢S. =
¢.(xz,x*) to be a “bump” function with support in the epsilon ball centered on
a*, where [4f.(z,2%)dz = 1. We can think of 9§ ,.(y, F'(z*)) as the probability
density for y = F&(z*), (where F§ is the stochastic version of F' with parameter
€), given we begin, before application of F§ at z*. We can now define O%(p)(y) =
J ¥ (y, F(z*))p(2*)dz*. This operator O% has stationary densities which we might
call p%. The result can be restated. For an Axiom-A F| p% — p as € — 0 where p
is the acSRB measure of F'. (Section IV.H of [28] contains an exposition of this.)
Young came to similar results for random dynamical systems in a paper published
in 1986 [110]. More recently, Liu and collaborators have continued this line of
investigation, see [58, 57, 59].

Pugh and Shub have shown that in fact one needs less than Anosov or Axiom A
assumptions to get that the acSRB measure is an eSRB measure. More precisely,

Theorem 5.4.2 (Pugh and Shub, 1989 [69]). If i is an ergodic acSRB measure
with no zero Lyapunov exponents, then there exists a set of x with positive Lebesgue

measure such that,
n—1
1 )
> olF@) — [ odu (5.29)
i=0

In other words, 11 is an eSRB measure.

5.4.3 Examples and results for specific systems

In a paper published in 1993 [7] Benedicks and Young showed that the Hénon
system possesses a unique acSRB measure for a set of parameter values with posi-
tive Lebesgue measure. It follows from Pugh and Shub’s theorem that the acSRB
measure is also an eSRB measure. More recently, Tucker obtained that the Lorenz
system has an eSRB measure and gave an affirmative answer to the question of
whether or not the numerical simulations of Lorenz’s system are “real” [97]. It ap-
pears that Tucker at least comes into the vicinity of an acSRB measure since the
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proof of existence uses the work of Viana’s in which the measure — with the stable
directions quotiented out — is absolutely continuous w.r.t the Lebesgue measure
(see lemma 4.8 on page 96 of [99]). This is of course not a proof that the eSRB
measure is an acSRB measure.

There have been a fair number of other results on the existence of SRB measures
for systems with various assumptions about the rates of expansion. See [3, 4, 12,
19, 20, 23, 22, 26, 29, 41, 42, 44, 45, 47, 56, 79, 84, 85, 94, 98].

An example of how we may fail to get an acSRB was given by Bowen in [13]. As
illustrated in figure 5.3 below the only invariant density which comes via an ergodic
average as in the case of an eSRB measure is the Dirac 6 measure concentrated at

p2. Note that even though the measure one gets from averages is not acSRB it is
of course eSRB!

Figure 5.3: Bowen’s oo counterexample: A flow in the plane with sources at P,
and P3, and a hyperbolic saddle at P,. The unstable manifolds of P, connect
up with the stable manifolds of P, (homoclinic connections). The whole figure
oo is globally attracting. This is an example of an eSRB measure which s not
an acSRB measure. The eSRB measure is the Dirac 0 measure concentrated at
P, — any initial point except P, and P3; ends spending asymptotically longer and
longer times in arbitrarily small neighborhoods of P,. But this eSRB measure has
dimension 0 in the unstable direction and so it cannot be absolutely continuous
w.r.t. the Lebesgue measure on the unstable manifold at P;.
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5.4.4 Summary: SRB measures

In summary, there are three main definitions of an SRB measure which are equiv-
alent in the case of axiom A ( and therefore Anosov) systems. Except for the
result of Pugh and Shub [69], the relation of these different definitions has yet to
be worked out for other systems. Other notions of generalized SRB measures have
been defined. See for example [77].

In the case of specific systems we have several results proving the existence of
SRB measures, most notably the results mentioned above for the Hénon and Lorenz
systems. Finally, that there are obstructions to the existence of SRB measures can
be seen in Bowen’s simple counterexample.

5.5 Back to measuring model fidelity

We turn again to the question of modeling performance and the use of the relative
entropy gap G as a measure of that performance. The practical utility of G is
connected to the answers to several questions.

1. What does the “real” (perfect computation, asymptotic valued) G tell us
about the relation of the model and the system which generated the data?

2. How does finite precision affect these calculations? (What possible errors
could we make in our inferences about the model-system relation due to the
fact that our calculations are finite precision?)

3. How could one numerically estimate G”?7

4. What effect does finite data have on our result? In other words, what can
we say about convergence rates?

5.5.1 The Entropy Gap: What Does it Mean?

Let Ay > Ay > ... > A, be the distinct Lyapunov exponents of F', n; be the
dimensions associated with these distinct \;, p = max{i|\; > 0}, and E; be the
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subspaces associated with the )\;. Then the Kolmogorov entropy of the system
computed via the Lyapunov exponents can be written as follows

Aililp

where 0 < v; < n;, and 7; = n; if u is absolutely continuous in the \; directions
and

Given a dynamical system F', a partition B, and a model 6, we may estimate hpr)
and h(B, F, u : 0)(see section 5.5.4). A fundamental measure of the fidelity of a
model @ to a true processes  is relative entropy rate d(u||@). The relative entropy
rate:

e Gives the cost in bits per time step of doing a data compression based on the
wrong model. See [24] pages 89-90.

e Bounds the wealth doubling rate in gambling or investment. See [24] pages
127 and 129.

e Gives error exponents for classifiers. See [24] page 312 and the original paper
by Chernoff [21].

Using equations 5.30 and 5.31 and the fact that the entropy rate is the sup
(over measurable partitions) of the entropy rates computed on partitions, we get

hrry = hi (5.32)
hi > h(B, F, ) (5.33)

and since
dp,r(p/|0) = h(B, F, 1 : 0) — h(B, F, 1) (5.34)

we arrive at

dg,r(1]|0) > h(B, F, i : 0) — hy(ry = The Gap, (5.35)
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which permits us to conclude that a large gap implies a large relative entropy rate.

If the gap is zero, the relative entropy rate is dg g (||0) = (hrr) — hx) + (hx —
h(B, F, 11)), which we conjecture® means:

e the model is missing the fractal aspects of the measure along the unstable
foliation, and/or

e the partition B is not generating (i.e. hx > h(B, F, p)).

If models that capture such fractal aspects are deemed to be unacceptably complex
or sensitive in an application, then a zero gap indicates that the model may be
optimal® within the acceptable class.

5.5.2 Finite Precision: Lyapunov Exponents

We now consider the effects of finite precision on the calculation and meaning of
the Lyapunov spectrum. We begin with notation and assumptions.

First, let us denote the (floating point) finite precision representation of Rf by
R , where it is understood that e = 1/2{number of bits in mantissa} apq K is the number
of bits in the exponent. To simplify notation we will define A = R’j x- Let F be
the rounded version (on A) of F. When we speak of derivatives of F' we mean the
finite precision representations of DI’ which we denote DF. Note that this is not
the same thing as DF which isn’t even defined (A is discrete and finite!).

There are difficulties inherent in the floating point representation of a diffeo-
morphism F. The first is that F' is almost always NOT one-to-one. This can be
seen by considering what happens when the diffeomorphism maps from a region
with one set of finite precision exponents to another with a different set of finite
precision exponents. (We have a finite precision exponent for each coordinate or
dimension.) Then if the derivative has a magnitude that is smaller than one in a
direction corresponding to an increasing exponent, we are forced to map (round)
many points in the domain to one point in the range. See figure 5.4.

8 A caution is warranted by a result given in [87] of two different processes for which
the relative entropy rate is equal to zero!

91f the partition implicit in the measurement is not generating, then the “best” model
can give a negative gap even without using fractal models and a zero gap would indicate
there is still room for improvement.
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Figure 5.4: Example of loss of injectivity. This figure shows the graphs of y = x+1
and y = r+2 as well as their finite precision representations when the mantissa has
3 bits. (Note: This is not the standard floating point representation! We
have simplified things by assuming numbers are positive. And the set of numbers
we can represent are exactly those one obtains by looking at BBBx2¥ where B
= 0 or 1 and E is any positive or negative integer. By considering only positive
numbers we avoid having to think about a sign bit.)

The second difficulty is that moving from F to F cannot be viewed as a C*
small perturbation of F' even though it is small C°. Let us be a bit more careful
here and reduce the set A to the subset of A made up of the periodic orbits
and fixed points — we will call this subset A,. On this set, F is injective. Even
under this reduced mapping, we find that we could not have gotten there from F
by a C' small perturbation. Being a bit more precise, suppose that F* is some
diffeomorphism which agrees with ' on A,. While we can make ||[F — F*|| ~ e,
typically || DF —DF*|| ~ 1 cannot be avoided. This is illustrated in figure 5.5 which
shows a circle diffeomorphism in which the finite precision representation induces
O(e) perturbations to the mapping, but (1) perturbations to the derivative (which
can be seen with the help of the mean value theorem). We have chosen a uniform
discretization for simplicity. The problem with making the meaning of calculated
Lyapunov exponents precise is that the finite precision system F is a map from
A — a discrete and finite set — to itself. What exactly do the derivatives DF tell
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0 1

Orbit of ~F (fillsthe discretecircle)

F

— F

Figure 5.5: Example of a finite precision perturbation for which [|F — F*[|co = ¢,
but ||[DF — DF*|| ~ 1 for all possible extensions F™* of F.

us about F'? And since every orbit is eventually periodic then the finite precision
system F' has entropy equal to 0.

There are at least two routes to explore:

1 we can try to show that the Lyapunov exponents calculated from the finite
precision system F' converge to those of F' as ¢ — 0 and

2 we can fir € and try to say something about the existence of an infinite pre-
cision system F* : R¥ — R* which is an extension of F whose Lyapunov
exponents and entropy are given by the calculations done on the finite pre-
cision system F.

We will now formulate two results following these two approaches.
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Convergence as ¢ — 0.

What can we say about the asymptotic convergence of Lyapunov exponents as
round-off errors go to zero? We answer this with a theorem asserting that asymp-
totically, things behave well. But first a warning. Practically speaking, asymptotic
results can be misleading to the unwary since roundoff errors < 27100,000,000,000
might be required for 2 digits of accuracy in the result! Though it is true that
things are often better than this, we will use an estimate of orbital divergence
guaranteeing (roughly) that getting the Lyapunov exponents to within € will re-
quire roundoff errors less than § = exp(—Na) where N can be large and o > 0.
Therefore in our case “For sufficiently small roundoff error” means vanishingly

small roundoff error!

Definition 5.5.1. Let F' be a C? diffeomorphism of a compact k-dimensional man-
ifold M to itself. Let F' be a finite precision representation of F' on M. Then
roundoff = supremum of the round-off error = sup¢ (| F(x) — F(z)]).

Theorem 5.5.1. Let F be a C? diffeomorphism of a compact k-dimensional man-
ifold M to itself. Let u be an invariant probability measure of F. Then given
an € > 0 we may choose 6(€), N(€), and W, such that for any finite precision
representation F with roundoff < §(¢) we have:

e Vx € W,, the finite time Lyapunov exponents given by

1
N(e)

(€)

A@) = {) €eRA = —— log||[DF" () (w)|| for some v € TM,}

(5.36)
are within € of the Lyapunov exponents of F calculated at any y in a 6(e)
neighborhood of x.

o u(We) >1—e.

Proof: By “the Lyapunov spectrum « is within € of Lyapunov spectrum £” we
will mean that max{|A¢ — M|, ..., |A& — A?|} < ¢, where we have reverted, for the
purpose of this sentence, to exactly k, not necessarily distinct Lyapunov exponents
which are arranged in descending order.

Define W, to be the set of z € M such that the Lyapunov spectrum computed
from the first n iterates of F' with initial condition = has converged to within ¢; of
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the true Lyapunov spectrum of F'. Oseledec’s theorem assures us that W = U*W,,
is a set of full measure (i.e. u(W) =1. Let N(e1,€2) be the first natural number k&
such that u(Wj) > 1 — €. Since F is Lipschitz on M with Lipschitz constant Cr
for some Cr > 0, then we can use the mean value theorem for multidimensional
spaces to get that orbits computed with “mistakes” bounded by

02
(CE =1)/(Cr—1)

51 (62,77,) = (537)

stay within d, of each other for at least n steps. We can also conclude that since F'
is C?, that there is a d3(e3, n) such that if the sequence {y}? = {y1, 2, ..., Yn} € M
is within d3(e3, n) of an orbit of F, call it {z}7 (i.e. T4 = F(x;) fori=1,...,n—1
and ||y; — ;|| < d3(e3, n) for i = 1, ..., n), the n-time Lyapunov spectrum computed
along {y}7 is within €3 of the n-time Lyapunov spectrum calculated along {z}7.
Finally, there is a d,(n, €4) such that if the elements of a sequence of m X m matrices
{4, ...A,} are all within d,(n, €4) of the elements of another sequence of matrices
(B,..., B}, then

I A — 1L Bill2 < e (5.38)

This follows from the equivalence of norms in finite dimensional spaces AND the
fact that we can restrict ourselves to matrices in some bounded subset of R™.
Finally, since the norms of the n-fold products of derivative matrices are bounded
away from zero we may choose ¢, such that if ||II?; A; — I, B;||2 < €4(es5), then
log ||II7_, A; v|| — log ||II?_, B; v||2 < €5 for |[v|| = 1.

Now we begin to put all these pieces together. Choosing €¢; and e; we get
a set Wi(e,es) With (Wi(e,,e)) > 1 — €2 such that for every @ € Wi, c,), the
N (€1, €3)-time Lyapunov spectrum calculated at z is within €; of the true spectrum
at z. Next, requiring that roundoff < & = & (J3(es, N(e1, €2)), N(e1, €2)) will
force the actual N(eq, €3)-time Lyapunov spectrum to be within €3 of the N (e, €3)-
time Lyapunov spectrum computed on the finite precision orbit, but with eract
derivatives. Requiring that roundoff < 5y = d4(N (€1, €2), €4(€5)) ensures that
the computed N(eq, €2)-time Lyapunov spectrum is within e5 of the N(eq, €3)-time
Lyapunov spectrum computed on the finite precision orbit with exact derivatives.

Condensing things once more, choosing roundoff < min{é;,d,}, we get that
the computed N(eq, €2)-time Lyapunov spectrum is within €; + €3 + €5 of the true
spectrum on a subset of M with measure > 1 — €. Since €4, €9, €3, and €5 were
chosen independently of each other we are done. QED.
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Remark 5.5.1. The impracticality mentioned before the proof comes from the
exponentially small §1. If our system is uniformly hyperbolic then we can use a
shadowing orbit that does not — a-priori — suffer from a constraint on the numerical
errors that 1s exponentially small. In the next subsection, we consider what sort of
result we need for practical computation of Lyapunov exponents to be useful.

Remark 5.5.2. We have not tried to optimize this result. We actually only need
errors that are small in exponent. LE. I could be looking at €™ instead of € since
I am really interested in something like the behavior of % log(quantity(n)) instead
of simply quantity (n). But working with exponents would not remove the problem
with the vanishing of 9.

Remark 5.5.3. When considering the computation of Lyapunov exponents on a
finite precision machine, Bochi’s recent proof of a theorem put forward by Ma7ié in
1983 [61] gives us a pause. Here is the theorem (for which Mané never published

a proof).

Theorem 5.5.2 (Bochi-Mané [61, 63, 11]). Let M be a compact Riemannian
2-dimensional smooth manifold and p be the normalized area. Denote by Diﬁi(M)
the set of all p preserving C diffeomorphisms with the C' topology. Then there
exists a residual subset R C Dzﬁi(M) such that every f € R is either Anosov or

1
AT = lim -1 Df*l =0 5.39
(f.)= lim Liog||Df2]| (539
for p almost every x. (AT (f,z) = largest Lyapunov exponent.)

Note that this result DOES NOT imply that close to every non-Anosov area-
preserving diffeomorphism there is one with zero Lyapunov erponents. It DOES
imply that any C*-open set of non-Anosov, area-preserving diffeomorphisms would
have a dense subset of area-preserving diffeomorphisms with zero exponents. Con-
sequently, the existence of a mon-zero Lyapunov exponent diffeomorphism in this
open set, would permit us to conclude that the Lyapunov exponents are not contin-
uous in F' (i.e. small changes in the mapping F', can lead to jumps in the spectrum
of exponents).

Remark 5.5.4. A recent result of Sauer’s [82] warns against assuming that even
though a system might not be shadow-able the time averages come out OK. He
argues in fact, that for a test function ¢, one expects () computed = (D) true = Kot
where { ) indicates integration against the “natural measure”, i.e. time averages.
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Here K might be zero (things may work out) but if K is not zero, then he gives
an argument (not a proof yet) that divergence is governed by the strength of the
non-hyperbolicity h, and the size of the numerical errors § (which we are calling
roundoff ). This result underlines the importance of the stopping time prescribed
in theorem 5.5.1.

The existence of an extension for a fixed e.

Having already observed the difficulties associated with the finite precision repre-
sentations of diffeomorphisms, we can see that wishing for some sort metric “con-
jugacy” between the original map F and some extension F* of the finite precision
representation F' is probably too much to ask for. Instead, we might simply ask
for an extension for which the Lyapunov exponents and entropy are identical (or
close ) to those calculated from F.

We now conjecture a desired result — one that needs to be true for a calcula-
tion using a finite precision representation to have meaning. We use the notation
introduced in the first part of this subsection. Recall that roundoff = supremum
of the round-off error = sup,,,(|F(z) — F(z)|), that A is the finite precision ap-
proximation of R¥ and that A, is the subset of A made up of the periodic orbits
and fixed points of F'.

Conjecture 5.5.1. Suppose that F is a diffeomorphism mapping RE to itself with
an tnvariant measure y which is also ergodic. Suppose further that F is the finite
precision (floating point) representation mapping A = R’:’K to itself. Denote the
restriction of ' to Ap by Fp. Let B be a closed ball centered on the origin in R¥ big
enough to contain A, in the interior. Let cA, be the conver hull'® of the Lyapunov
spectra of Fp - we may get a different spectrum for each periodic orbit in A,. Then:

1 There exists a C? diffeomorphism F; of B onto B such that
|Fy(z) — 13’; (z)|| < roundoff and | DF,(z) — DFI;*H < roundoff
for all x € A,,.

2 The Lyapunov spectra of F’;, denote them by A;(x), lies in a roundoff neigh-
borhood of cA, for all x € A,.

10The convez hull of a point set A is the smallest convex set containing A. Equivalently,
the convex hull of A is the intersection of all convex sets containing A.
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5.5.3 Finite Precision: Cross Entropy

So far we have addressed finite precision effects on the computation of the hpr)
part of h(B, F,p : 0) — hrry. What of the cross entropy of the model computed
along the system’s orbit? That is what of A(B, F, i : )7 How does finite precision
affect the computation of this quantity?

Recall the definition of entropy rate, (Eqn. 5.4). For a stationary stochastic
process with finite alphabet A we get

h=—lim ~ 3 u({a}?)log 4 ({a}}) (5.40)

n—o00 7 (T
arsy
_ N ) n—1
= ggg{;u({a}l)log p(an| {a}7 ™) (5.41)
ary
=l }Z 1 ({0}, og 4 (aol {a}=2.,) (5.42)
a5 _nt1

where the last line follows from stationarity.

Suppose we have one (long) symbol sequence. Can we use this process sample
to compute the entropy rate? One would hope so since summing over all possible
sequences to compute the entropy rate is computationally out of reach. And in
fact, this is exactly what the theorems of Shannon-McMillan (SM) and Shannon-
McMillan-Breiman'! (SMB) assures us we can do: we can compute the entropy
rate by using single symbol sequences that are long enough. Actually SM is implied
by SMB, but we will quote both of them here.

Theorem 5.5.3 (Shannon-McMillan). For an ergodic stationary process with a
finite alphabet A, probability measure u, and entropy rate equal to h, for any e > 0
there is an ng and for all n > ng, there is a set of outcomes T,, € A™ such that:

(@) u(Tn) 21 —¢
(b) Y{a}, € T, exp(—n(h +¢€)) < p({a}}) < exp(—n(h — ¢)). (5.44

Breiman’s generalization says

111t should be noted that it is these theorems which form the conceptual basis for the
coding of symbol sequences from ergodic sources. The theorems say, in effect, that coding
systems exist which code symbol sequences emanating from an ergodic source with bit
sequences of (asymptotic) length equal to the number of symbols in the sequence times
the binary entropy rate of the ergodic source.
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Theorem 5.5.4 (Shannon-McMillan-Breiman [15, 16]).

1
lim —— log( ({a}?)) = h with probability one. (5.45)
n—r0o0
We would like to have theorems like the two above for cross entropy. Following

Eqn. 5.8, if we have a stationary process with a probability measure p and a finite
alphabet A then the cross entropy rate for a second probability measure 6 is

h(u:6) = lim —H ({AY", - 6), (5.46)

n—oo 1N,

where

H({A}Y p:0) ==Y p({a}})log (0 ({a}})). (5.47)

{a}?
So, we would like a theorem like

“Desired Theorem” 5.5.1 (Shannon-McMillan for Cross-Entropy). For
an ergodic stationary process with a finite alphabet A, probability measure u, and
cross entropy rate for a second measure h(u : 6), for any € > 0 there is an ny and
for all n > ng, there is a set of outcomes T,, € A™ such that:

(a) u(T,) >1—¢€ (5.48)
(b) V{a} € Tn, exp(=n(h(p:0) +¢€)) < 0({a}7) < exp(—n(h(n: 0) —¢)).
(5.49)

Instead of proving this generalization of the original Shannon-McMillan theo-
rem, we will prove a version of the Shannon-McMillan-Breiman theorem valid for
cross entropy. We make assumptions on # which, in the usual SMB case follow
from stationarity and ergodicity. The assumptions on # imply that:

e the present becomes asymptotically independent of the past as the past be-
comes more distant, i.e. g, = —logf(agla_1, ...,a_,) converge yu a.e.

e and we can apply the dominated convergence theorem, i.e. E(supy |gx|) < oo.

We believe that one should be able to get the result assuming only that 6 is
stationary, in which case we would need to allow the cross entropy rate to be equal
to +00. See remark 5.5.5 which follows the proof of the theorem. Now the theorem.
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Theorem 5.5.5 (Shannon-McMillan-Breiman for Cross Entropy). If we
assume that the random variables g, = —logf(ag|a—1, ...,a_,) converge u a.e. and
they are bounded above by an (L1 ) integrable function (i.e. E(supy |gk|) < 00) then
we have that

1
lim ——log (0({a}})) = h(u : ) with probability one. (5.50)

n—o00 n

Proof: We prove this using the generalized ergodic theorem of Breiman’s [15].

Theorem 5.5.6 (Breiman). Let T be a metrically transitive one-to-one mea-
sure preserving transformation of the probability space (2, B, u) onto itself. Let
g90(w), g1(w), ... be a sequence of measurable functions on Q0 converging a.s. to the
function g(w) such that E(supy |gx|) < co. Then

n—1
1
lim - ng(Tkw) =FEg a.s. (5.51)
k=0

Define g, = —logf(ag|{a}Z;). Let T be the shift map. By assumption we
satisfy the conditions of Breiman’s ergodic theorem. Therefore we have that

1 1 N
—Eloge(al, ey Op) = - ;gk(T (w)) = Eg as.. (5.52)

The dominated convergence theorem then permits us to observe that

Eg = lim Eg, (5.53)
n—o
and since
h(p:0) = limy o> 0 | Eg (5.54)
= lim,,_, Eg, (5.55)

we are done. QED.

Remark 5.5.5. If 0 is Markov of any order then g, = gn for all kK > N where
N s the Markov order. We then get both conditions on gy satisfied. Thus 6 being
Markov of any order implies that the SMB for cross-entropy holds. This makes one
think of taking a general stationary 0 and approximating it by Markov processes.
As noted before the theorem, we will need to permit the entropy rate to be = oo.
This is work for the future. (Actually, this is part of what Algoet and Cover do in
their “Sandwich” proof of SMB [2].)
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Remark 5.5.6. We went from the stochastic process characterized by 0 to a mea-
sure preserving transformation without much comment. (See Breiman [17] section
6.2 for more on these alternate but equivalent representations.)

Next we address briefly the practical computation of the Lyapunov exponents
and the loglikelihoods discussed so far.

5.5.4 Practical Computation

Essentially, the Benettin procedure [8, 9] is a method for computing all the Lya-
punov exponents. One way to think of the procedure is that one simply picks a large
enough N, then computes the matrix DFY(z) = DF(FY~'(z)) o DF(FY2(z) o
..o DF(F(x)) o DF(x). Next the SVD of this matrix is computed:

DFN(z) = 0,08 0O (5.56)

The singular values of DF (z) lie along the diagonal of S and % times the logs of
those singular values gives the finite time Lyapunov spectrum. The right singular
vectors (columns of O,) form a basis for the Lyapunov subspaces. How this is
actually done in the algorithm is different. We refer the reader to the details
in [8, 9].

We are assuming throughout that one can compute the log likelihoods with ease
so that the only remaining question is, ”What is the rate of convergence of the log
likelihood estimates?” This will be briefly addressed in the next subsection.

5.5.5 Convergence Rates

What can we say about convergence rates? In complete generality, not much. We
now list existing results concerning the calculation of Lyapunov exponents and
entropy.

Convergence of Lyapunov Exponent Calculations

Very little has been written about the (rigorous) convergence of numerical rou-
tines which calculate Lyapunov exponents. A paper by Brian Hunt [43] is one of
the few examples in which the Lyapunov exponents are calculated and rigorous
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bounds given. A paper of Mera and Moran [64] proves the asymptotic convergence
of the Eckmann and Ruelle algorithm in the case of exact arithmetic (not finite
precision). In the Eckmann and Ruelle algorithm one has at least two limiting
processes to worry about — the convergence of the tangent map approximations
(estimated from measurements) and convergence of the finite time Lyapunov ex-
ponents to the Lyapunov exponents. Since Oseledec’s theorem eliminates worry
about convergence of the finite time Lyapunov exponents, one must deal with the
convergence of the tangent map approximations.

In addition to the papers by Benettin et.al. [8, 9] in which they assume the
system (F') is available and in which they use the Gram-Schmidt decomposition,
there is the original paper by Wolf et.al. [106] which initiated a series of other papers
all on the computation of Lyapunov exponents from data. Slightly later, Eckmann
et.al. [27] published a study of an alternative to the Wolf et.al. algorithm. This
algorithm, first suggested in [28], uses the QR decomposition and is the object of
study in Mera and Moran’s paper mentioned above.

The methods tend to divide along the lines of {discrete/continuous}, {compu-
tations done in the state space/computations done from measurements of the state-
space} and method of computation based on {Gram-Schmidt/QR-decomp./SVD}.
The studies of convergence are either asymptotic and rigorous or empirical com-
parisons of various methods.

For other algorithms and studies of convergence etc. see the following fairly
complete list of references [6, 10, 25, 33, 35, 36, 37, 46, 49, 50, 66, 70, 74, 78, 80,
93, 103, 104, 105, 108, 109, 112].

Convergence of Entropy Calculations

The question of “How fast can the cross-entropy rate be calculated?” is identical to
the question, “What is the rates of convergence in the Generalized ergodic theorem
of Breiman’s?”. We know of nothing along these lines for the convergence of cross
entropy rates, but here is what’s known for on the convergence of entropy estimates
(where we are not concerned with the convergence of the random variables g, found
in theorem 5.5.5 above.)

We quote from page 165 of Paul Shields book “The ergodic theory of discrete
sample paths” [86] (which we recommend as a reference):
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Many of the processes studied in classical probability theory, such as
i.i.d processes, Markov processes, and finite-state processes have expo-
nential rates of convergence for frequencies of all orders and for entropy,
but some standard processes, such as renewal processes, do not have
exponential rates. In the general ergodic case, no uniform rate is pos-
sible, that is, given any convergence rate for frequencies or for entropy,
there is an ergodic process that does not satisfy the rate.

Exactly how these results translate in the case of cross-entropy estimation still
needs to be studied.

5.6 Summarizing Cartoons, Questions and Syn-
opsis

In view of the fact that this chapter has been rather long and involved we will now
paint a simplified, summarizing picture.

In this chapter, we proposed and studied a measure of model fidelity based on
the notion of relative entropy rate. More specifically, we did so for those models
built on the basis of data generated by a known, underlying system. This will
typically be the case in the testing phase of model building. That is, if we are
testing a model building procedure, we will do this with data collected from a
known system. We begin with a system and a set of measurements derived from
that system (data). We build a model based on that data. Then we compute
the loglikelihood and the positive Lyapunov exponents in order to obtain the final
number, the Gap. See figure 5.6 for a visual summary.

What we wanted from our calculations was the relative entropy rate, h(u||6).
And in fact, under special conditions “The Gap” = h(p||#). Under somewhat
more general conditions this equivalence disappears and we retain only that the
computed Gap is a lower bound to h(pl||@), i.e “The Gap” < h(u||f). Some of the
steps outlined in figure 5.6 can be augmented to show questions: see figure 5.7.

Under the most realistic conditions, the fundamental questions behind the ques-
tions shown in figure 5.7 involve the smoothness of the invariant measure and the
relation of finite computations to their ideal goals.
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System'x = f(x) ¢t )

\

Data {y}

Model 6
Logllkellhood 1/n(logb ({y} )

The Gap _1/n(|oge - =X

Figure 5.6: Illustrative summarizing cartoon: The dependencies and computed
quantities.

System'x = f(x) & )

P

= entropy rate h(p) ? bata {y}

\.——w

Model B

/

Loglikelihood = 1/n(loge ({y}rll))) =crossentropy rateh(p: 6) ?

The Gap =1/n(logé ({y}rl])))— s N =reative entropy rateh(u||8) ?

Figure 5.7: Illustrative summarizing cartoon with questions

Is 1 an SRB measure 7 Whether or not the measure is smooth along the unsta-
ble manifolds is the key question as demonstrated by the work of Leddrapier
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and Young.

Does acSRB=eSRB or =sSRB7? If we can prove another version of “SRB” for
our invariant measure p say eSRB or sSRB, can we show that this implies
that u is in fact acSRB as needs to to be the case for our purposes?

Convergence? We have finite data and finite computing resources at our disposal.
Always. So how close do we get to the asymptotic result? Very little is known
about bounds on convergence rates.

Finite Precision Effects? Even if we can run an algorithm as long as desired,
there is still the fact that we are doing the calculation on a finite precision
model of the real number system. How does this effect our final answer? This
is another question that is very difficult to answer in all but the simplest cases.

Does the SMB theorem hold for our model? Since we are using a general-
ized version of the Shannon-McMillan-Breiman theorem to get that the log-
likelihood converges to the cross entropy rate, are we sure that the model
process and underlying system satisfy the theorem’s assumptions? Can we
prove a more general theorem?

5.6.1 Synopsis

In the end, we are left with two question areas — one fairly narrow and the other
broad — which must be considered in order to understand what our computations
mean and what they might say about the relationship of our model to the under-
lying system.

Is ;1 smooth along the unstable directions? The question of whether or not
a particular system has an SRB measure is a very difficult one. The result
of this fact is that if we are using a system for which we are unsure of the
smoothness of the invariant measure in the unstable direction, we may be
under-estimating the measure of divergence between the model and system.

Do our calculations approximate the infinite? The question of rigorous con-
vergence rates is also a very difficult one. Effort should be put into these
questions. This is involved since we have the following dimensions to the
computational question:
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1 Does our system/model satisfy the assumptions of our computational
methods? (e.g. the SMB theorem.)

2 Finite precision vs. Infinite precision.
3 Finite Data vs. Infinite Data.

4 Finite Compute time vs. Infinite Compute time.

5.7 Conclusions

In this paper we consider the use of entropy, cross-entropy, and the Lyapunov spec-
trum for the characterization of model fidelity. A gap G, previously pointed to in
[31], was carefully defined and discussed. The use of Lyapunov exponents to ob-
tain the KS entropy of the system generating the data necessitates consideration of
SRB measures. Due to the variety of definitions of SRB and the level of technical
details connected with them we took a careful look at the area. The result is that
the G can be zero without this indicating that the model perfectly reproduces the
system. We presented some indication of why this may be an acceptable. Nev-
ertheless, if the gap is positive, this does indicate there is room for improvement.
Further work might include:

1 A deeper look at conjecture 5.5.1 (This is the conjecture that Lyapunov
exponents computed in finite precision are representative of some nearby
system).

2 Another look at the Shannon-McMillan-Breiman theorem for cross-entropy
(in particular, we think it is true for arbitrary stationary processes as long
as we permit the limit to be +00).

3 Studies of convergence rates for the various computations above.

4 A look at how much the assumption that F' is a C? diffeomorphism can be
weakened and still retain the second Ledrappier-Young result which asserts
that the entropy equals the ”fractally” weighted sum of Lyapunov exponents.



Chapter 6

Afterword

What remains is to follow some of the questions opened up in the work presented
in this dissertation. In particular, I am interested in the following questions, one
or two of which I intend to explore in the near future.

From chapter 3: How sensitive is the test for aliasing based on sampling sta-
tionarity? Can we characterize the loss of sampling stationarity so as to be
able to differentiate between 1) extremely under-sampled, 2) almost correctly
sampled, and 3) correctly sampled signals? How does the test depend on the
amount of data used to make the classification?

From chapter 3: Can we characterize, in some very practical way, the precise
conditions a signal must satisfy in order for it to have sampling stationarity?

From chapter 4: Can the conjectured route for the nonlinear case ( see sec. 4.6.3)
be followed to a theorem as suggested?

From chapter 4: What sorts of results can one get under the addition of mea-
surement noise?

From chapter 5: What are the weakest assumptions on F' that still permit us
to obtain theorems 5.3.2 and 5.3.3. (These are the theorems which tell us
that the entropy equals the averaged, “fractally” weighted sum of positive
Lyapunov exponents.)

From chapter 5: What result along the lines of Conjecture 5.5.1 can we prove?
(This is the conjecture that, roughly, Lyapunov exponents computed in finite
precision are representative of some nearby system.)
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From chapter 5: Can we prove that a general stationary process 6 satisfies the
conditions assumed in the Shannon-McMillan-Breiman theorem for cross en-
tropy (Theorem 5.5.5)7 (With perhaps the relaxation of boundedness ... we
would permit the cross entropy rate to be infinite.)
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